yahiab
fix
861d6d7
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torch
import torchvision.transforms as transforms
import timm
# URL for the Hugging Face checkpoint
CHECKPOINT_URL = "https://huggingface.co/ReefNet/beit_global/resolve/main/checkpoint-60.pth"
# Class labels
all_classes = [
'Acanthastrea', 'Acropora', 'Agaricia', 'Alveopora', 'Astrea', 'Astreopora',
'Caulastraea', 'Coeloseris', 'Colpophyllia', 'Coscinaraea', 'Ctenactis',
'Cycloseris', 'Cyphastrea', 'Dendrogyra', 'Dichocoenia', 'Diploastrea',
'Diploria', 'Dipsastraea', 'Echinophyllia', 'Echinopora', 'Euphyllia',
'Eusmilia', 'Favia', 'Favites', 'Fungia', 'Galaxea', 'Gardineroseris',
'Goniastrea', 'Goniopora', 'Halomitra', 'Herpolitha', 'Hydnophora',
'Isophyllia', 'Isopora', 'Leptastrea', 'Leptoria', 'Leptoseris',
'Lithophyllon', 'Lobactis', 'Lobophyllia', 'Madracis', 'Meandrina', 'Merulina',
'Montastraea', 'Montipora', 'Mussa', 'Mussismilia', 'Mycedium', 'Orbicella',
'Oulastrea', 'Oulophyllia', 'Oxypora', 'Pachyseris', 'Pavona', 'Pectinia',
'Physogyra', 'Platygyra', 'Plerogyra', 'Plesiastrea', 'Pocillopora',
'Podabacia', 'Porites', 'Psammocora', 'Pseudodiploria', 'Sandalolitha',
'Scolymia', 'Seriatopora', 'Siderastrea', 'Stephanocoenia', 'Stylocoeniella',
'Stylophora', 'Tubastraea', 'Turbinaria'
]
# Example image paths
example_images = {
"Acropora": "coral_images/Acropora_millepora.jpg",
"Agaricia": "coral_images/Agaricia_agaricites.jpg",
"Acropora aculeus": "coral_images/Acropora_aculeus.jpg",
"Montipora": "coral_images/Montipora_patula.jpg",
"Pocillopora": "coral_images/Pocillopora_acuta.jpg",
"Porites": "coral_images/porities_lobata.jpg",
"Favites": "coral_images/Favites_abdita.jpg",
"Fungia": "coral_images/Fungia_concinna.jpg",
}
# Function to load the BeIT model
def load_model(model_name):
print(f"Loading {model_name} model...")
args = type('', (), {})()
args.model = 'beitv2_large_patch16_224.in1k_ft_in22k_in1k'
args.nb_classes = len(all_classes)
args.drop_path = 0.1
# Create model
model = timm.create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
use_rel_pos_bias=True,
use_abs_pos_emb=True,
)
# Load checkpoint from Hugging Face
checkpoint = torch.hub.load_state_dict_from_url(CHECKPOINT_URL, map_location="cpu")
state_dict = checkpoint.get('model', checkpoint)
filtered_state_dict = {k: v for k, v in state_dict.items() if "relative_position_index" not in k}
model.load_state_dict(filtered_state_dict, strict=False)
# Move model to CUDA if available
model.eval()
if torch.cuda.is_available():
model.cuda()
return model
# Preprocessing transforms
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Initialize model
model = load_model('beit')
def predict_label(image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
input_tensor = preprocess(image).unsqueeze(0)
if torch.cuda.is_available():
input_tensor = input_tensor.cuda()
with torch.no_grad():
outputs = model(input_tensor)
predicted_class = torch.argmax(outputs, dim=1).item()
return all_classes[predicted_class]
def draw_rectangle(image, x, y, size=224):
"""Draw a clear red rectangle with increased thickness."""
image_pil = image.copy() # Create a copy to avoid modifying the original image
draw = ImageDraw.Draw(image_pil)
x1, y1 = x, y
x2, y2 = x + size, y + size
draw.rectangle([x1, y1, x2, y2], outline="red", width=6) # Increase the width for clarity
return image_pil
def crop_image(image, x, y, size=224):
image_np = np.array(image)
h, w, _ = image_np.shape
x = min(max(x, 0), w - size)
y = min(max(y, 0), h - size)
cropped = image_np[y:y+size, x:x+size]
return Image.fromarray(cropped)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## Coral Classification with BeIT Model")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Image", interactive=True)
x_slider = gr.Slider(0, 1000, step=1, value=0, label="X Coordinate")
y_slider = gr.Slider(0, 1000, step=1, value=0, label="Y Coordinate")
with gr.Column():
interactive_image = gr.Image(label="Interactive Image")
cropped_image = gr.Image(label="Cropped Patch")
label_output = gr.Textbox(label="Predicted Label")
# Crop and Predict buttons
crop_button = gr.Button("Crop")
predict_button = gr.Button("Predict")
# Example table
def load_example(example_path):
return Image.open(example_path).convert("RGB")
# Generate table of examples
with gr.Row():
gr.Markdown("### Example Images for Quick Testing")
with gr.Row():
for genus, path in example_images.items():
with gr.Column():
thumbnail = gr.Image(value=path, interactive=False, label=genus)
select_button = gr.Button(value=f"Select {genus}")
select_button.click(fn=lambda p=path: load_example(p), inputs=None, outputs=image_input)
# Button functionality
crop_button.click(fn=lambda img, x, y: (draw_rectangle(img, x, y), crop_image(img, x, y)),
inputs=[image_input, x_slider, y_slider], outputs=[interactive_image, cropped_image])
predict_button.click(fn=predict_label, inputs=cropped_image, outputs=label_output)
def update_sliders(image):
if image:
width, height = image.size
return gr.update(maximum=width - 224), gr.update(maximum=height - 224)
return gr.update(), gr.update()
image_input.change(fn=update_sliders, inputs=image_input, outputs=[x_slider, y_slider])
# demo.launch()
demo.launch(server_name="0.0.0.0", server_port=7860)