Spaces:
Sleeping
Sleeping
RedSparkie
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,36 +3,29 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
from TTS.api import TTS
|
5 |
import os
|
6 |
-
import argparse
|
7 |
-
import os
|
8 |
-
import sys
|
9 |
import tempfile
|
10 |
-
import librosa.display
|
11 |
-
import numpy as np
|
12 |
-
|
13 |
import torchaudio
|
14 |
-
import
|
15 |
-
from TTS.demos.xtts_ft_demo.utils.formatter import format_audio_list
|
16 |
-
from TTS.demos.xtts_ft_demo.utils.gpt_train import train_gpt
|
17 |
-
|
18 |
from TTS.tts.configs.xtts_config import XttsConfig
|
19 |
from TTS.tts.models.xtts import Xtts
|
20 |
|
|
|
21 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
22 |
|
|
|
23 |
device = "cpu"
|
24 |
|
25 |
-
|
26 |
-
model_path =
|
27 |
-
config_path =
|
28 |
-
vocab_path =
|
29 |
-
|
30 |
|
|
|
31 |
def clear_gpu_cache():
|
32 |
-
# clear the GPU cache
|
33 |
if torch.cuda.is_available():
|
34 |
torch.cuda.empty_cache()
|
35 |
|
|
|
36 |
XTTS_MODEL = None
|
37 |
def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
|
38 |
global XTTS_MODEL
|
@@ -42,24 +35,32 @@ def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
|
|
42 |
config = XttsConfig()
|
43 |
config.load_json(xtts_config)
|
44 |
XTTS_MODEL = Xtts.init_from_config(config)
|
45 |
-
print("Loading XTTS model!
|
46 |
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
print("Model Loaded!")
|
51 |
|
|
|
52 |
def run_tts(lang, tts_text, speaker_audio_file):
|
53 |
if XTTS_MODEL is None or not speaker_audio_file:
|
54 |
return "You need to run the previous step to load the model !!", None, None
|
55 |
|
56 |
-
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(
|
|
|
|
|
|
|
|
|
|
|
57 |
out = XTTS_MODEL.inference(
|
58 |
text=tts_text,
|
59 |
language=lang,
|
60 |
gpt_cond_latent=gpt_cond_latent,
|
61 |
speaker_embedding=speaker_embedding,
|
62 |
-
temperature=XTTS_MODEL.config.temperature,
|
63 |
length_penalty=XTTS_MODEL.config.length_penalty,
|
64 |
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
|
65 |
top_k=XTTS_MODEL.config.top_k,
|
@@ -70,21 +71,23 @@ def run_tts(lang, tts_text, speaker_audio_file):
|
|
70 |
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
|
71 |
out_path = fp.name
|
72 |
torchaudio.save(out_path, out["wav"], 24000)
|
73 |
-
print("Speech generated
|
74 |
|
75 |
return out_path, speaker_audio_file
|
76 |
|
77 |
-
|
78 |
@spaces.GPU(enable_queue=True)
|
79 |
def generate(text, audio):
|
80 |
load_model(model_path, config_path, vocab_path)
|
81 |
out_path, speaker_audio_file = run_tts(lang='es', tts_text=text, speaker_audio_file=audio)
|
82 |
return out_path
|
83 |
|
|
|
84 |
demo = gr.Interface(
|
85 |
fn=generate,
|
86 |
inputs=[gr.Textbox(label='Frase a generar'), gr.Audio(type='filepath', label='Voz de referencia')],
|
87 |
outputs=gr.Audio(type='filepath')
|
88 |
)
|
89 |
|
|
|
90 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
from TTS.api import TTS
|
5 |
import os
|
|
|
|
|
|
|
6 |
import tempfile
|
|
|
|
|
|
|
7 |
import torchaudio
|
8 |
+
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
9 |
from TTS.tts.configs.xtts_config import XttsConfig
|
10 |
from TTS.tts.models.xtts import Xtts
|
11 |
|
12 |
+
# Aceptar los t茅rminos de COQUI
|
13 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
14 |
|
15 |
+
# Definir el dispositivo como CPU
|
16 |
device = "cpu"
|
17 |
|
18 |
+
# Descargar archivos desde HuggingFace
|
19 |
+
model_path = hf_hub_download(repo_id="RedSparkie/danielmula", filename="model.pth")
|
20 |
+
config_path = hf_hub_download(repo_id="RedSparkie/danielmula", filename="config.json")
|
21 |
+
vocab_path = hf_hub_download(repo_id="RedSparkie/danielmula", filename="vocab.json")
|
|
|
22 |
|
23 |
+
# Funci贸n para limpiar la cach茅 de GPU (no necesaria para CPU, pero la mantengo por si en el futuro usas GPU)
|
24 |
def clear_gpu_cache():
|
|
|
25 |
if torch.cuda.is_available():
|
26 |
torch.cuda.empty_cache()
|
27 |
|
28 |
+
# Cargar el modelo XTTS
|
29 |
XTTS_MODEL = None
|
30 |
def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
|
31 |
global XTTS_MODEL
|
|
|
35 |
config = XttsConfig()
|
36 |
config.load_json(xtts_config)
|
37 |
XTTS_MODEL = Xtts.init_from_config(config)
|
38 |
+
print("Loading XTTS model!")
|
39 |
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
|
40 |
+
|
41 |
+
# No mover a GPU ya que usamos CPU
|
42 |
+
# if torch.cuda.is_available():
|
43 |
+
# XTTS_MODEL.cuda()
|
44 |
|
45 |
print("Model Loaded!")
|
46 |
|
47 |
+
# Funci贸n para ejecutar TTS
|
48 |
def run_tts(lang, tts_text, speaker_audio_file):
|
49 |
if XTTS_MODEL is None or not speaker_audio_file:
|
50 |
return "You need to run the previous step to load the model !!", None, None
|
51 |
|
52 |
+
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(
|
53 |
+
audio_path=speaker_audio_file,
|
54 |
+
gpt_cond_len=XTTS_MODEL.config.gpt_cond_len,
|
55 |
+
max_ref_length=XTTS_MODEL.config.max_ref_len,
|
56 |
+
sound_norm_refs=XTTS_MODEL.config.sound_norm_refs
|
57 |
+
)
|
58 |
out = XTTS_MODEL.inference(
|
59 |
text=tts_text,
|
60 |
language=lang,
|
61 |
gpt_cond_latent=gpt_cond_latent,
|
62 |
speaker_embedding=speaker_embedding,
|
63 |
+
temperature=XTTS_MODEL.config.temperature,
|
64 |
length_penalty=XTTS_MODEL.config.length_penalty,
|
65 |
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
|
66 |
top_k=XTTS_MODEL.config.top_k,
|
|
|
71 |
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
|
72 |
out_path = fp.name
|
73 |
torchaudio.save(out_path, out["wav"], 24000)
|
74 |
+
print("Speech generated!")
|
75 |
|
76 |
return out_path, speaker_audio_file
|
77 |
|
78 |
+
# Definir la funci贸n para Gradio
|
79 |
@spaces.GPU(enable_queue=True)
|
80 |
def generate(text, audio):
|
81 |
load_model(model_path, config_path, vocab_path)
|
82 |
out_path, speaker_audio_file = run_tts(lang='es', tts_text=text, speaker_audio_file=audio)
|
83 |
return out_path
|
84 |
|
85 |
+
# Configurar la interfaz de Gradio
|
86 |
demo = gr.Interface(
|
87 |
fn=generate,
|
88 |
inputs=[gr.Textbox(label='Frase a generar'), gr.Audio(type='filepath', label='Voz de referencia')],
|
89 |
outputs=gr.Audio(type='filepath')
|
90 |
)
|
91 |
|
92 |
+
# Lanzar la interfaz
|
93 |
demo.launch()
|