Spaces:
Runtime error
Runtime error
Commit
·
55f1779
1
Parent(s):
6d7e9fd
add SII evaluation metric
Browse files- app.py +61 -37
- images/Northeastern_seal.png +0 -0
- images/cartoon.png +0 -0
- requirements.txt +2 -0
app.py
CHANGED
@@ -2,6 +2,8 @@ from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont
|
|
2 |
import numpy as np
|
3 |
import math
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
##### CONSTANTS #####
|
7 |
# ASCII characters used to represent image pixels, reversed for better contrast in mapping
|
@@ -14,9 +16,6 @@ CHAR_LEN = len(CHAR_ARRAY)
|
|
14 |
# Grayscale level for each ASCII character, determining how many shades of gray each character represents
|
15 |
GRAYSCALE_LEVEL = CHAR_LEN / 256
|
16 |
|
17 |
-
# Scaling factor to resize the image
|
18 |
-
SCALE = 0.2
|
19 |
-
|
20 |
# Target number of characters per row
|
21 |
TARGET_WIDTH = 200
|
22 |
|
@@ -24,7 +23,7 @@ TARGET_WIDTH = 200
|
|
24 |
CHAR_W = 6
|
25 |
CHAR_H = 14
|
26 |
|
27 |
-
#####
|
28 |
def getChar(inputInt, gamma=1.8):
|
29 |
"""Map a grayscale pixel value to an ASCII character with gamma correction applied."""
|
30 |
# Adjust the input pixel intensity using gamma correction for perceptual brightness adjustment
|
@@ -33,25 +32,11 @@ def getChar(inputInt, gamma=1.8):
|
|
33 |
return CHAR_ARRAY[math.floor(inputInt * GRAYSCALE_LEVEL)]
|
34 |
|
35 |
|
36 |
-
# def load_and_preprocess_image(image):
|
37 |
-
# """Resize and preprocess the input image, adjusting contrast and blurring for better ASCII conversion."""
|
38 |
-
# width, height = image.size
|
39 |
-
# # Resize image, adjusting aspect ratio to fit ASCII character dimensions
|
40 |
-
# im = image.resize((int(SCALE * width), int(SCALE * height * (CHAR_W / CHAR_H))))
|
41 |
-
|
42 |
-
# # Enhance contrast to bring out more detail in the ASCII representation
|
43 |
-
# im = ImageOps.equalize(im, mask=None)
|
44 |
-
|
45 |
-
# # Apply a slight blur to reduce noise and simplify pixel values
|
46 |
-
# im = im.filter(ImageFilter.GaussianBlur(radius=0.5))
|
47 |
-
|
48 |
-
# return im
|
49 |
-
|
50 |
def load_and_preprocess_image(image):
|
51 |
"""Resize and preprocess the input image, adjusting contrast and blurring for better ASCII conversion."""
|
52 |
width, height = image.size
|
53 |
|
54 |
-
# Calculate the scaling factor to match the target character width
|
55 |
scale_factor = TARGET_WIDTH / width
|
56 |
|
57 |
# Resize the image, maintaining the aspect ratio considering the character dimensions
|
@@ -88,15 +73,14 @@ def create_ascii_art(im):
|
|
88 |
|
89 |
return ascii_art
|
90 |
|
91 |
-
|
92 |
def draw_ascii_image(ascii_art_string, char_width, char_height, font_size):
|
93 |
"""Draw the ASCII art string onto an image."""
|
94 |
# Split the ASCII art string into lines
|
95 |
lines = ascii_art_string.split('\n')
|
96 |
|
97 |
# Determine the dimensions of the image based on the number of characters
|
98 |
-
width = max(len(line) for line in lines)
|
99 |
-
height = len(lines)
|
100 |
|
101 |
# Create a blank white image based on the ASCII art size and font size
|
102 |
img_width = width * char_width
|
@@ -114,50 +98,90 @@ def draw_ascii_image(ascii_art_string, char_width, char_height, font_size):
|
|
114 |
return ascii_image
|
115 |
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
def process_image(image):
|
118 |
"""Process the input image to generate both an ASCII art image and a downloadable text file."""
|
119 |
-
# Resize and preprocess the image
|
120 |
resized_image = load_and_preprocess_image(image)
|
121 |
-
# Generate the ASCII art as text
|
122 |
ascii_art = create_ascii_art(resized_image)
|
123 |
|
124 |
-
# Create an image from the ASCII art characters
|
125 |
output_image = draw_ascii_image(ascii_art, char_width=CHAR_W, char_height=CHAR_H, font_size=10)
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
# Save the ASCII art as a text file
|
128 |
ascii_txt_path = "ascii_art.txt"
|
129 |
with open(ascii_txt_path, "w") as text_file:
|
130 |
text_file.write(ascii_art)
|
131 |
|
132 |
-
|
|
|
|
|
133 |
|
134 |
|
135 |
##### GRADIO INTERFACE #####
|
136 |
def gradio_interface(image):
|
137 |
-
|
138 |
-
ascii_image, txt_file
|
139 |
-
return ascii_image, txt_file
|
140 |
|
141 |
-
# Set up the Gradio interface
|
142 |
demo = gr.Interface(
|
143 |
-
fn=gradio_interface,
|
144 |
inputs=gr.Image(type="pil", label="Upload an Image", height=300),
|
145 |
outputs=[
|
146 |
gr.Image(type="pil", label="ASCII Art Image", height=300),
|
147 |
gr.File(label="Download ASCII Art Text File", height=50),
|
|
|
148 |
],
|
149 |
-
title="ASCII Art Generator",
|
150 |
-
description="Upload an image,
|
151 |
allow_flagging="never",
|
152 |
-
|
153 |
['images/building.jpg'],
|
154 |
['images/cat.webp'],
|
155 |
['images/dog.jpg'],
|
156 |
['images/people.jpg'],
|
157 |
-
['images/
|
158 |
['images/einstein.jpg'],
|
159 |
],
|
160 |
-
|
161 |
)
|
162 |
|
|
|
163 |
demo.launch()
|
|
|
2 |
import numpy as np
|
3 |
import math
|
4 |
import gradio as gr
|
5 |
+
from skimage.metrics import structural_similarity as ssim
|
6 |
+
import cv2
|
7 |
|
8 |
##### CONSTANTS #####
|
9 |
# ASCII characters used to represent image pixels, reversed for better contrast in mapping
|
|
|
16 |
# Grayscale level for each ASCII character, determining how many shades of gray each character represents
|
17 |
GRAYSCALE_LEVEL = CHAR_LEN / 256
|
18 |
|
|
|
|
|
|
|
19 |
# Target number of characters per row
|
20 |
TARGET_WIDTH = 200
|
21 |
|
|
|
23 |
CHAR_W = 6
|
24 |
CHAR_H = 14
|
25 |
|
26 |
+
##### ASCII ART GENERATION #####
|
27 |
def getChar(inputInt, gamma=1.8):
|
28 |
"""Map a grayscale pixel value to an ASCII character with gamma correction applied."""
|
29 |
# Adjust the input pixel intensity using gamma correction for perceptual brightness adjustment
|
|
|
32 |
return CHAR_ARRAY[math.floor(inputInt * GRAYSCALE_LEVEL)]
|
33 |
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def load_and_preprocess_image(image):
|
36 |
"""Resize and preprocess the input image, adjusting contrast and blurring for better ASCII conversion."""
|
37 |
width, height = image.size
|
38 |
|
39 |
+
# Calculate the scaling factor to match the target character width
|
40 |
scale_factor = TARGET_WIDTH / width
|
41 |
|
42 |
# Resize the image, maintaining the aspect ratio considering the character dimensions
|
|
|
73 |
|
74 |
return ascii_art
|
75 |
|
|
|
76 |
def draw_ascii_image(ascii_art_string, char_width, char_height, font_size):
|
77 |
"""Draw the ASCII art string onto an image."""
|
78 |
# Split the ASCII art string into lines
|
79 |
lines = ascii_art_string.split('\n')
|
80 |
|
81 |
# Determine the dimensions of the image based on the number of characters
|
82 |
+
width = max(len(line) for line in lines)
|
83 |
+
height = len(lines)
|
84 |
|
85 |
# Create a blank white image based on the ASCII art size and font size
|
86 |
img_width = width * char_width
|
|
|
98 |
return ascii_image
|
99 |
|
100 |
|
101 |
+
##### EVALUATION #####
|
102 |
+
def ascii_to_image(ascii_art, width, height):
|
103 |
+
"""Convert ASCII art back to an image by mapping characters to grayscale values."""
|
104 |
+
char_to_gray = {c: int((i / CHAR_LEN) * 255) for i, c in enumerate(CHAR_ARRAY)}
|
105 |
+
ascii_lines = ascii_art.split('\n')
|
106 |
+
|
107 |
+
# Create an empty numpy array to store the pixel values
|
108 |
+
ascii_image = np.zeros((height, width), dtype=np.uint8)
|
109 |
+
|
110 |
+
for i, line in enumerate(ascii_lines):
|
111 |
+
if i >= height:
|
112 |
+
break
|
113 |
+
for j, char in enumerate(line):
|
114 |
+
if j >= width:
|
115 |
+
break
|
116 |
+
ascii_image[i, j] = char_to_gray.get(char, 255) # Default to white if character not in mapping
|
117 |
+
|
118 |
+
return Image.fromarray(ascii_image)
|
119 |
+
|
120 |
+
def calculate_ssi(original_image, ascii_art_image):
|
121 |
+
"""Calculate Structural Similarity Index (SSI) between the original and reconstructed images."""
|
122 |
+
original_image = original_image.convert("L")
|
123 |
+
|
124 |
+
# Resize the original image to match the dimensions of the ASCII art image
|
125 |
+
original_image_resized = original_image.resize(ascii_art_image.size)
|
126 |
+
|
127 |
+
# Convert both images to NumPy arrays
|
128 |
+
original_array = np.array(original_image_resized)
|
129 |
+
ascii_array = np.array(ascii_art_image)
|
130 |
+
|
131 |
+
# Calculate SSI
|
132 |
+
ssi_value, _ = ssim(original_array, ascii_array, full=True)
|
133 |
+
return ssi_value
|
134 |
+
|
135 |
+
|
136 |
+
##### MAIN FUNCTION FOR GRADIO INTERFACE #####
|
137 |
def process_image(image):
|
138 |
"""Process the input image to generate both an ASCII art image and a downloadable text file."""
|
|
|
139 |
resized_image = load_and_preprocess_image(image)
|
|
|
140 |
ascii_art = create_ascii_art(resized_image)
|
141 |
|
|
|
142 |
output_image = draw_ascii_image(ascii_art, char_width=CHAR_W, char_height=CHAR_H, font_size=10)
|
143 |
+
|
144 |
+
# Convert the ASCII art back into an image for SSI comparison
|
145 |
+
ascii_art_image = ascii_to_image(ascii_art, resized_image.width, resized_image.height)
|
146 |
+
|
147 |
+
# Calculate SSI between the original and ASCII art image
|
148 |
+
ssi_value = calculate_ssi(image, ascii_art_image)
|
149 |
+
|
150 |
# Save the ASCII art as a text file
|
151 |
ascii_txt_path = "ascii_art.txt"
|
152 |
with open(ascii_txt_path, "w") as text_file:
|
153 |
text_file.write(ascii_art)
|
154 |
|
155 |
+
print(f"Structural Similarity Index (SSI): {ssi_value}")
|
156 |
+
|
157 |
+
return output_image, ascii_txt_path, ssi_value
|
158 |
|
159 |
|
160 |
##### GRADIO INTERFACE #####
|
161 |
def gradio_interface(image):
|
162 |
+
ascii_image, txt_file, ssi_value = process_image(image)
|
163 |
+
return ascii_image, txt_file, ssi_value
|
|
|
164 |
|
|
|
165 |
demo = gr.Interface(
|
166 |
+
fn=gradio_interface,
|
167 |
inputs=gr.Image(type="pil", label="Upload an Image", height=300),
|
168 |
outputs=[
|
169 |
gr.Image(type="pil", label="ASCII Art Image", height=300),
|
170 |
gr.File(label="Download ASCII Art Text File", height=50),
|
171 |
+
gr.Textbox(label="SSI Value")
|
172 |
],
|
173 |
+
title="ASCII Art Generator with SSI Metric",
|
174 |
+
description="Upload an image, generate ASCII art, and calculate the Structural Similarity Index (SSI).",
|
175 |
allow_flagging="never",
|
176 |
+
examples=[
|
177 |
['images/building.jpg'],
|
178 |
['images/cat.webp'],
|
179 |
['images/dog.jpg'],
|
180 |
['images/people.jpg'],
|
181 |
+
['images/cartoon.png'],
|
182 |
['images/einstein.jpg'],
|
183 |
],
|
|
|
184 |
)
|
185 |
|
186 |
+
|
187 |
demo.launch()
|
images/Northeastern_seal.png
DELETED
Binary file (367 kB)
|
|
images/cartoon.png
ADDED
![]() |
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
gradio==4.44.0
|
2 |
pillow==9.3.0
|
3 |
numpy==1.23.4
|
|
|
|
|
|
1 |
gradio==4.44.0
|
2 |
pillow==9.3.0
|
3 |
numpy==1.23.4
|
4 |
+
scikit-image==0.19.3
|
5 |
+
opencv-python==4.9.0.80
|