This view is limited to 50 files because it contains too many changes.Β  See the raw diff here.
Files changed (50) hide show
  1. .clang-format +0 -40
  2. .flake8 +4 -0
  3. .github/workflows/ci.yml +1 -6
  4. .github/workflows/format.yml +18 -17
  5. .github/workflows/pip.yml +0 -62
  6. .github/workflows/release-drafter.yml +16 -0
  7. .github/workflows/release.yml +0 -95
  8. .gitignore +1 -6
  9. .pre-commit-config.yaml +0 -88
  10. CODE_OF_CONDUCT.md +0 -128
  11. Dockerfile +1 -1
  12. MANIFEST.in +0 -12
  13. README.md +64 -126
  14. {imcui β†’ api}/__init__.py +0 -0
  15. {imcui/api β†’ api}/client.py +225 -232
  16. imcui/api/core.py β†’ api/server.py +499 -308
  17. {imcui/api β†’ api}/test/CMakeLists.txt +2 -3
  18. {imcui/api β†’ api}/test/build_and_run.sh +16 -16
  19. {imcui/api β†’ api}/test/client.cpp +84 -81
  20. {imcui/api β†’ api}/test/helper.h +410 -405
  21. imcui/api/__init__.py β†’ api/types.py +16 -47
  22. app.py +3 -6
  23. build_docker.sh +1 -1
  24. {imcui/datasets β†’ datasets}/.gitignore +0 -0
  25. {imcui/datasets β†’ datasets}/sacre_coeur/README.md +0 -0
  26. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/02928139_3448003521.jpg +0 -0
  27. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/03903474_1471484089.jpg +0 -0
  28. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/10265353_3838484249.jpg +0 -0
  29. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/17295357_9106075285.jpg +0 -0
  30. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/32809961_8274055477.jpg +0 -0
  31. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/44120379_8371960244.jpg +0 -0
  32. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/51091044_3486849416.jpg +0 -0
  33. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/60584745_2207571072.jpg +0 -0
  34. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/71295362_4051449754.jpg +0 -0
  35. {imcui/datasets β†’ datasets}/sacre_coeur/mapping/93341989_396310999.jpg +0 -0
  36. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot135.jpg +0 -0
  37. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot180.jpg +0 -0
  38. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot225.jpg +0 -0
  39. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot270.jpg +0 -0
  40. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot315.jpg +0 -0
  41. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg +0 -0
  42. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg +0 -0
  43. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot135.jpg +0 -0
  44. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot180.jpg +0 -0
  45. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot225.jpg +0 -0
  46. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot270.jpg +0 -0
  47. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot315.jpg +0 -0
  48. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot45.jpg +0 -0
  49. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot90.jpg +0 -0
  50. {imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/10265353_3838484249_rot135.jpg +0 -0
.clang-format DELETED
@@ -1,40 +0,0 @@
1
- BasedOnStyle: Chromium
2
- IncludeBlocks: Preserve
3
- IncludeCategories:
4
- - Regex: '^<.*>'
5
- Priority: 1
6
- - Regex: '^".*"'
7
- Priority: 2
8
- SortIncludes: true
9
- Language: Cpp
10
- AccessModifierOffset: 2
11
- AlignAfterOpenBracket: true
12
- AlignConsecutiveAssignments: false
13
- AlignConsecutiveDeclarations: false
14
- AlignEscapedNewlines: Right
15
- AlignOperands: true
16
- AlignTrailingComments: false
17
- AllowAllParametersOfDeclarationOnNextLine: true
18
- AllowShortBlocksOnASingleLine: false
19
- AllowShortCaseLabelsOnASingleLine: true
20
- AllowShortFunctionsOnASingleLine: None
21
- AllowShortIfStatementsOnASingleLine: true
22
- AllowShortLoopsOnASingleLine: true
23
- AlwaysBreakAfterReturnType: None
24
- AlwaysBreakBeforeMultilineStrings: true
25
- AlwaysBreakTemplateDeclarations: false
26
- BinPackArguments: false
27
- BinPackParameters: false
28
- BreakBeforeBraces: Attach
29
- BreakBeforeInheritanceComma: false
30
- BreakBeforeTernaryOperators: true
31
- BreakStringLiterals: false
32
- ColumnLimit: 88
33
- CompactNamespaces: false
34
- ConstructorInitializerAllOnOneLineOrOnePerLine: true
35
- ConstructorInitializerIndentWidth: 4
36
- ContinuationIndentWidth: 4
37
- IndentCaseLabels: true
38
- IndentWidth: 4
39
- TabWidth: 4
40
- UseTab: Never
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.flake8 ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ [flake8]
2
+ max-line-length = 80
3
+ extend-ignore = E203,E501,E402
4
+ exclude = .git,__pycache__,build,.venv/,third_party
.github/workflows/ci.yml CHANGED
@@ -11,7 +11,6 @@ on:
11
  jobs:
12
  build:
13
  runs-on: ubuntu-latest
14
- # runs-on: self-hosted
15
 
16
  steps:
17
  - name: Checkout code
@@ -29,9 +28,5 @@ jobs:
29
  pip install -r requirements.txt
30
  sudo apt-get update && sudo apt-get install ffmpeg libsm6 libxext6 -y
31
 
32
- - name: Build and install
33
- run: pip install .
34
-
35
  - name: Run tests
36
- # run: python -m pytest
37
- run: python tests/test_basic.py
 
11
  jobs:
12
  build:
13
  runs-on: ubuntu-latest
 
14
 
15
  steps:
16
  - name: Checkout code
 
28
  pip install -r requirements.txt
29
  sudo apt-get update && sudo apt-get install ffmpeg libsm6 libxext6 -y
30
 
 
 
 
31
  - name: Run tests
32
+ run: python test_app_cli.py
 
.github/workflows/format.yml CHANGED
@@ -1,23 +1,24 @@
1
- # This is a format job. Pre-commit has a first-party GitHub action, so we use
2
- # that: https://github.com/pre-commit/action
3
-
4
- name: Format
5
-
6
  on:
7
- workflow_dispatch:
8
- pull_request:
9
  push:
10
  branches:
11
- - main
12
-
 
 
 
13
  jobs:
14
- pre-commit:
15
- name: Format
16
  runs-on: ubuntu-latest
17
- # runs-on: self-hosted
18
  steps:
19
- - uses: actions/checkout@v4
20
- - uses: actions/setup-python@v5
21
- with:
22
- python-version: "3.x"
23
- - uses: pre-commit/[email protected]
 
 
 
 
 
 
1
+ name: Format and Lint Checks
 
 
 
 
2
  on:
 
 
3
  push:
4
  branches:
5
+ - main
6
+ paths:
7
+ - '*.py'
8
+ pull_request:
9
+ types: [ assigned, opened, synchronize, reopened ]
10
  jobs:
11
+ check:
12
+ name: Format and Lint Checks
13
  runs-on: ubuntu-latest
 
14
  steps:
15
+ - uses: actions/checkout@v4
16
+ - uses: actions/setup-python@v4
17
+ with:
18
+ python-version: '3.10'
19
+ cache: 'pip'
20
+ - run: python -m pip install --upgrade pip
21
+ - run: python -m pip install .[dev]
22
+ - run: python -m flake8 ui/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py
23
+ - run: python -m isort ui/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py --check-only --diff
24
+ - run: python -m black ui/*.py hloc/*.py hloc/matchers/*.py hloc/extractors/*.py --check --diff
.github/workflows/pip.yml DELETED
@@ -1,62 +0,0 @@
1
- name: Pip
2
- on:
3
- workflow_dispatch:
4
- pull_request:
5
- push:
6
- branches:
7
- - main
8
-
9
- jobs:
10
- build:
11
- strategy:
12
- fail-fast: false
13
- matrix:
14
- platform: [ubuntu-latest]
15
- python-version: ["3.9", "3.10"]
16
-
17
- runs-on: ${{ matrix.platform }}
18
- # runs-on: self-hosted
19
- steps:
20
- - uses: actions/checkout@v4
21
- with:
22
- submodules: recursive
23
-
24
- - uses: actions/setup-python@v5
25
- with:
26
- python-version: ${{ matrix.python-version }}
27
-
28
- - name: Upgrade setuptools and wheel
29
- run: |
30
- pip install --upgrade setuptools wheel
31
-
32
- - name: Install dependencies on Ubuntu
33
- if: runner.os == 'Linux'
34
- run: |
35
- sudo apt-get update
36
- sudo apt-get install libopencv-dev -y
37
-
38
- - name: Install dependencies on macOS
39
- if: runner.os == 'macOS'
40
- run: |
41
- brew update
42
- brew install opencv
43
-
44
- - name: Install dependencies on Windows
45
- if: runner.os == 'Windows'
46
- run: |
47
- choco install opencv -y
48
-
49
- - name: Add requirements
50
- run: python -m pip install --upgrade wheel setuptools
51
-
52
- - name: Install Python dependencies
53
- run: |
54
- pip install pytest
55
- pip install -r requirements.txt
56
- sudo apt-get update && sudo apt-get install ffmpeg libsm6 libxext6 -y
57
-
58
- - name: Build and install
59
- run: pip install .
60
-
61
- - name: Test
62
- run: python -m pytest
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.github/workflows/release-drafter.yml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Release Drafter
2
+
3
+ on:
4
+ push:
5
+ # branches to consider in the event; optional, defaults to all
6
+ branches:
7
+ - master
8
+
9
+ jobs:
10
+ update_release_draft:
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ # Drafts your next Release notes as Pull Requests are merged into "master"
14
+ - uses: release-drafter/[email protected]
15
+ env:
16
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
.github/workflows/release.yml DELETED
@@ -1,95 +0,0 @@
1
- name: PyPI Release
2
- on:
3
- release:
4
- types: [published]
5
-
6
- jobs:
7
- build:
8
- strategy:
9
- fail-fast: false
10
- matrix:
11
- platform: [ubuntu-latest]
12
- python-version: ["3.9", "3.10", "3.11"]
13
-
14
- runs-on: ${{ matrix.platform }}
15
- steps:
16
- - uses: actions/checkout@v4
17
- with:
18
- submodules: recursive
19
-
20
- - uses: actions/setup-python@v5
21
- with:
22
- python-version: ${{ matrix.python-version }}
23
-
24
- - name: Upgrade setuptools and wheel
25
- run: |
26
- pip install --upgrade setuptools wheel
27
-
28
- - name: Install dependencies on Ubuntu
29
- if: runner.os == 'Linux'
30
- run: |
31
- sudo apt-get update
32
- sudo apt-get install libopencv-dev -y
33
-
34
- - name: Install dependencies on macOS
35
- if: runner.os == 'macOS'
36
- run: |
37
- brew update
38
- brew install opencv
39
-
40
- - name: Install dependencies on Windows
41
- if: runner.os == 'Windows'
42
- run: |
43
- choco install opencv -y
44
-
45
- - name: Add requirements
46
- run: python -m pip install --upgrade setuptools wheel build
47
-
48
- - name: Install Python dependencies
49
- run: |
50
- pip install pytest
51
- pip install -r requirements.txt
52
- sudo apt-get update && sudo apt-get install ffmpeg libsm6 libxext6 -y
53
-
54
- - name: Build source distribution
55
- run: |
56
- python -m build --outdir dist/
57
- ls -lh dist/
58
-
59
- - name: Upload to GitHub Release
60
- if: matrix.python-version == '3.10' && github.event_name == 'release'
61
- uses: softprops/action-gh-release@v2
62
- with:
63
- files: dist/*.whl
64
- env:
65
- GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
66
-
67
- - name: Archive wheels
68
- if: matrix.python-version == '3.10' && github.event_name == 'release'
69
- uses: actions/upload-artifact@v4
70
- with:
71
- name: dist
72
- path: dist/*.whl
73
-
74
-
75
- pypi-publish:
76
- name: upload release to PyPI
77
- needs: build
78
- runs-on: ubuntu-latest
79
- environment: pypi
80
- permissions:
81
- # IMPORTANT: this permission is mandatory for Trusted Publishing
82
- id-token: write
83
- steps:
84
- # retrieve your distributions here
85
- - name: Download artifacts
86
- uses: actions/download-artifact@v4
87
- with:
88
- name: dist
89
- path: dist
90
-
91
- - name: List dist directory
92
- run: ls -lh dist/
93
-
94
- - name: Publish package distributions to PyPI
95
- uses: pypa/gh-action-pypi-publish@release/v1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.gitignore CHANGED
@@ -1,4 +1,5 @@
1
  build/
 
2
  bin/
3
  cmake_modules/
4
  cmake-build-debug/
@@ -25,9 +26,3 @@ gen_example.py
25
  datasets/lines/terrace0.JPG
26
  datasets/lines/terrace1.JPG
27
  datasets/South-Building*
28
- *.pkl
29
- oryx-build-commands.txt
30
- .ruff_cache*
31
- dist
32
- tmp
33
- backup*
 
1
  build/
2
+ # lib
3
  bin/
4
  cmake_modules/
5
  cmake-build-debug/
 
26
  datasets/lines/terrace0.JPG
27
  datasets/lines/terrace1.JPG
28
  datasets/South-Building*
 
 
 
 
 
 
.pre-commit-config.yaml DELETED
@@ -1,88 +0,0 @@
1
- # To use:
2
- #
3
- # pre-commit run -a
4
- #
5
- # Or:
6
- #
7
- # pre-commit run --all-files
8
- #
9
- # Or:
10
- #
11
- # pre-commit install # (runs every time you commit in git)
12
- #
13
- # To update this file:
14
- #
15
- # pre-commit autoupdate
16
- #
17
- # See https://github.com/pre-commit/pre-commit
18
-
19
- ci:
20
- autoupdate_commit_msg: "chore: update pre-commit hooks"
21
- autofix_commit_msg: "style: pre-commit fixes"
22
-
23
- repos:
24
- # Standard hooks
25
- - repo: https://github.com/pre-commit/pre-commit-hooks
26
- rev: v5.0.0
27
- hooks:
28
- - id: check-added-large-files
29
- exclude: ^imcui/third_party/
30
- - id: check-case-conflict
31
- exclude: ^imcui/third_party/
32
- - id: check-merge-conflict
33
- exclude: ^imcui/third_party/
34
- - id: check-symlinks
35
- exclude: ^imcui/third_party/
36
- - id: check-yaml
37
- exclude: ^imcui/third_party/
38
- - id: debug-statements
39
- exclude: ^imcui/third_party/
40
- - id: end-of-file-fixer
41
- exclude: ^imcui/third_party/
42
- - id: mixed-line-ending
43
- exclude: ^imcui/third_party/
44
- - id: requirements-txt-fixer
45
- exclude: ^imcui/third_party/
46
- - id: trailing-whitespace
47
- exclude: ^imcui/third_party/
48
-
49
- - repo: https://github.com/astral-sh/ruff-pre-commit
50
- rev: "v0.8.4"
51
- hooks:
52
- - id: ruff
53
- args: ["--fix", "--show-fixes", "--extend-ignore=E402"]
54
- - id: ruff-format
55
- exclude: ^(docs|imcui/third_party/)
56
-
57
- # Checking static types
58
- - repo: https://github.com/pre-commit/mirrors-mypy
59
- rev: "v1.14.0"
60
- hooks:
61
- - id: mypy
62
- files: "setup.py"
63
- args: []
64
- additional_dependencies: [types-setuptools]
65
- exclude: ^imcui/third_party/
66
- # Changes tabs to spaces
67
- - repo: https://github.com/Lucas-C/pre-commit-hooks
68
- rev: v1.5.5
69
- hooks:
70
- - id: remove-tabs
71
- exclude: ^(docs|imcui/third_party/)
72
-
73
- # CMake formatting
74
- - repo: https://github.com/cheshirekow/cmake-format-precommit
75
- rev: v0.6.13
76
- hooks:
77
- - id: cmake-format
78
- additional_dependencies: [pyyaml]
79
- types: [file]
80
- files: (\.cmake|CMakeLists.txt)(.in)?$
81
- exclude: ^imcui/third_party/
82
-
83
- # Suggested hook if you add a .clang-format file
84
- - repo: https://github.com/pre-commit/mirrors-clang-format
85
- rev: v13.0.0
86
- hooks:
87
- - id: clang-format
88
- exclude: ^imcui/third_party/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CODE_OF_CONDUCT.md DELETED
@@ -1,128 +0,0 @@
1
- # Contributor Covenant Code of Conduct
2
-
3
- ## Our Pledge
4
-
5
- We as members, contributors, and leaders pledge to make participation in our
6
- community a harassment-free experience for everyone, regardless of age, body
7
- size, visible or invisible disability, ethnicity, sex characteristics, gender
8
- identity and expression, level of experience, education, socio-economic status,
9
- nationality, personal appearance, race, religion, or sexual identity
10
- and orientation.
11
-
12
- We pledge to act and interact in ways that contribute to an open, welcoming,
13
- diverse, inclusive, and healthy community.
14
-
15
- ## Our Standards
16
-
17
- Examples of behavior that contributes to a positive environment for our
18
- community include:
19
-
20
- * Demonstrating empathy and kindness toward other people
21
- * Being respectful of differing opinions, viewpoints, and experiences
22
- * Giving and gracefully accepting constructive feedback
23
- * Accepting responsibility and apologizing to those affected by our mistakes,
24
- and learning from the experience
25
- * Focusing on what is best not just for us as individuals, but for the
26
- overall community
27
-
28
- Examples of unacceptable behavior include:
29
-
30
- * The use of sexualized language or imagery, and sexual attention or
31
- advances of any kind
32
- * Trolling, insulting or derogatory comments, and personal or political attacks
33
- * Public or private harassment
34
- * Publishing others' private information, such as a physical or email
35
- address, without their explicit permission
36
- * Other conduct which could reasonably be considered inappropriate in a
37
- professional setting
38
-
39
- ## Enforcement Responsibilities
40
-
41
- Community leaders are responsible for clarifying and enforcing our standards of
42
- acceptable behavior and will take appropriate and fair corrective action in
43
- response to any behavior that they deem inappropriate, threatening, offensive,
44
- or harmful.
45
-
46
- Community leaders have the right and responsibility to remove, edit, or reject
47
- comments, commits, code, wiki edits, issues, and other contributions that are
48
- not aligned to this Code of Conduct, and will communicate reasons for moderation
49
- decisions when appropriate.
50
-
51
- ## Scope
52
-
53
- This Code of Conduct applies within all community spaces, and also applies when
54
- an individual is officially representing the community in public spaces.
55
- Examples of representing our community include using an official e-mail address,
56
- posting via an official social media account, or acting as an appointed
57
- representative at an online or offline event.
58
-
59
- ## Enforcement
60
-
61
- Instances of abusive, harassing, or otherwise unacceptable behavior may be
62
- reported to the community leaders responsible for enforcement at
63
64
- All complaints will be reviewed and investigated promptly and fairly.
65
-
66
- All community leaders are obligated to respect the privacy and security of the
67
- reporter of any incident.
68
-
69
- ## Enforcement Guidelines
70
-
71
- Community leaders will follow these Community Impact Guidelines in determining
72
- the consequences for any action they deem in violation of this Code of Conduct:
73
-
74
- ### 1. Correction
75
-
76
- **Community Impact**: Use of inappropriate language or other behavior deemed
77
- unprofessional or unwelcome in the community.
78
-
79
- **Consequence**: A private, written warning from community leaders, providing
80
- clarity around the nature of the violation and an explanation of why the
81
- behavior was inappropriate. A public apology may be requested.
82
-
83
- ### 2. Warning
84
-
85
- **Community Impact**: A violation through a single incident or series
86
- of actions.
87
-
88
- **Consequence**: A warning with consequences for continued behavior. No
89
- interaction with the people involved, including unsolicited interaction with
90
- those enforcing the Code of Conduct, for a specified period of time. This
91
- includes avoiding interactions in community spaces as well as external channels
92
- like social media. Violating these terms may lead to a temporary or
93
- permanent ban.
94
-
95
- ### 3. Temporary Ban
96
-
97
- **Community Impact**: A serious violation of community standards, including
98
- sustained inappropriate behavior.
99
-
100
- **Consequence**: A temporary ban from any sort of interaction or public
101
- communication with the community for a specified period of time. No public or
102
- private interaction with the people involved, including unsolicited interaction
103
- with those enforcing the Code of Conduct, is allowed during this period.
104
- Violating these terms may lead to a permanent ban.
105
-
106
- ### 4. Permanent Ban
107
-
108
- **Community Impact**: Demonstrating a pattern of violation of community
109
- standards, including sustained inappropriate behavior, harassment of an
110
- individual, or aggression toward or disparagement of classes of individuals.
111
-
112
- **Consequence**: A permanent ban from any sort of public interaction within
113
- the community.
114
-
115
- ## Attribution
116
-
117
- This Code of Conduct is adapted from the [Contributor Covenant][homepage],
118
- version 2.0, available at
119
- https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
120
-
121
- Community Impact Guidelines were inspired by [Mozilla's code of conduct
122
- enforcement ladder](https://github.com/mozilla/diversity).
123
-
124
- [homepage]: https://www.contributor-covenant.org
125
-
126
- For answers to common questions about this code of conduct, see the FAQ at
127
- https://www.contributor-covenant.org/faq. Translations are available at
128
- https://www.contributor-covenant.org/translations.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dockerfile CHANGED
@@ -11,7 +11,7 @@ RUN apt-get update && apt-get install -y git-lfs
11
  RUN git lfs install
12
 
13
  # Clone the Git repository
14
- RUN git clone --recursive https://github.com/Vincentqyw/image-matching-webui.git /code
15
 
16
  RUN conda create -n imw python=${PYTHON_VERSION}
17
  RUN echo "source activate imw" > ~/.bashrc
 
11
  RUN git lfs install
12
 
13
  # Clone the Git repository
14
+ RUN git clone https://huggingface.co/spaces/Realcat/image-matching-webui /code
15
 
16
  RUN conda create -n imw python=${PYTHON_VERSION}
17
  RUN echo "source activate imw" > ~/.bashrc
MANIFEST.in DELETED
@@ -1,12 +0,0 @@
1
- # logo
2
- include imcui/assets/logo.webp
3
-
4
- recursive-include imcui/ui *.yaml
5
- recursive-include imcui/api *.yaml
6
- recursive-include imcui/third_party *.yaml *.cfg *.yml
7
-
8
- # ui examples
9
- # recursive-include imcui/datasets *.JPG *.jpg *.png
10
-
11
- # model
12
- recursive-include imcui/third_party/SuperGluePretrainedNetwork *.pth
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -4,99 +4,85 @@ emoji: πŸ€—
4
  colorFrom: red
5
  colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 5.4.0
8
  app_file: app.py
9
  pinned: true
10
  license: apache-2.0
11
  ---
 
12
  [![Contributors][contributors-shield]][contributors-url]
13
  [![Forks][forks-shield]][forks-url]
14
  [![Stargazers][stars-shield]][stars-url]
15
  [![Issues][issues-shield]][issues-url]
16
 
17
  <p align="center">
18
- <h1 align="center"><br><ins>Image Matching WebUI</ins>
19
- <br>Matching Keypoints between two images</h1>
20
  </p>
21
- <div align="center">
22
- <a target="_blank" href="https://github.com/Vincentqyw/image-matching-webui/actions/workflows/release.yml"><img src="https://github.com/Vincentqyw/image-matching-webui/actions/workflows/release.yml/badge.svg" alt="PyPI Release"></a>
23
- <a target="_blank" href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
24
- <a target="_blank" href="https://pypi.org/project/imcui"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/imcui?style=flat&logo=pypi&label=imcui&link=https%3A%2F%2Fpypi.org%2Fproject%2Fimcui"></a>
25
- <a target="_blank" href="https://hub.docker.com/r/vincentqin/image-matching-webui"><img alt="Docker Image Version" src="https://img.shields.io/docker/v/vincentqin/image-matching-webui?sort=date&arch=amd64&logo=docker&label=imcui&link=https%3A%2F%2Fhub.docker.com%2Fr%2Fvincentqin%2Fimage-matching-webui"></a>
26
- <a target="_blank" href="https://pepy.tech/projects/imcui"><img src="https://static.pepy.tech/badge/imcui" alt="PyPI Downloads"></a>
27
-
28
- </div>
29
 
30
  ## Description
31
 
32
- `Image Matching WebUI (IMCUI)` efficiently matches image pairs using multiple famous image matching algorithms. The tool features a Graphical User Interface (GUI) designed using [gradio](https://gradio.app/). You can effortlessly select two images and a matching algorithm and obtain a precise matching result.
33
  **Note**: the images source can be either local images or webcam images.
34
 
35
- Try it on
36
- <a href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
37
- <a target="_blank" href="https://lightning.ai/realcat/studios/image-matching-webui"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a>
 
38
 
39
  Here is a demo of the tool:
40
 
41
- https://github.com/Vincentqyw/image-matching-webui/assets/18531182/263534692-c3484d1b-cc00-4fdc-9b31-e5b7af07ecd9
42
 
43
  The tool currently supports various popular image matching algorithms, namely:
44
-
45
- | Algorithm | Supported | Conference/Journal | Year | GitHub Link |
46
- |------------------|-----------|--------------------|------|-------------|
47
- | DaD | βœ… | ARXIV | 2025 | [Link](https://github.com/Parskatt/dad) |
48
- | MINIMA | βœ… | ARXIV | 2024 | [Link](https://github.com/LSXI7/MINIMA) |
49
- | XoFTR | βœ… | CVPR | 2024 | [Link](https://github.com/OnderT/XoFTR) |
50
- | EfficientLoFTR | βœ… | CVPR | 2024 | [Link](https://github.com/zju3dv/EfficientLoFTR) |
51
- | MASt3R | βœ… | CVPR | 2024 | [Link](https://github.com/naver/mast3r) |
52
- | DUSt3R | βœ… | CVPR | 2024 | [Link](https://github.com/naver/dust3r) |
53
- | OmniGlue | βœ… | CVPR | 2024 | [Link](https://github.com/Vincentqyw/omniglue-onnx) |
54
- | XFeat | βœ… | CVPR | 2024 | [Link](https://github.com/verlab/accelerated_features) |
55
- | RoMa | βœ… | CVPR | 2024 | [Link](https://github.com/Vincentqyw/RoMa) |
56
- | DeDoDe | βœ… | 3DV | 2024 | [Link](https://github.com/Parskatt/DeDoDe) |
57
- | Mickey | ❌ | CVPR | 2024 | [Link](https://github.com/nianticlabs/mickey) |
58
- | GIM | βœ… | ICLR | 2024 | [Link](https://github.com/xuelunshen/gim) |
59
- | ALIKED | βœ… | ICCV | 2023 | [Link](https://github.com/Shiaoming/ALIKED) |
60
- | LightGlue | βœ… | ICCV | 2023 | [Link](https://github.com/cvg/LightGlue) |
61
- | DarkFeat | βœ… | AAAI | 2023 | [Link](https://github.com/THU-LYJ-Lab/DarkFeat) |
62
- | SFD2 | βœ… | CVPR | 2023 | [Link](https://github.com/feixue94/sfd2) |
63
- | IMP | βœ… | CVPR | 2023 | [Link](https://github.com/feixue94/imp-release) |
64
- | ASTR | ❌ | CVPR | 2023 | [Link](https://github.com/ASTR2023/ASTR) |
65
- | SEM | ❌ | CVPR | 2023 | [Link](https://github.com/SEM2023/SEM) |
66
- | DeepLSD | ❌ | CVPR | 2023 | [Link](https://github.com/cvg/DeepLSD) |
67
- | GlueStick | βœ… | ICCV | 2023 | [Link](https://github.com/cvg/GlueStick) |
68
- | ConvMatch | ❌ | AAAI | 2023 | [Link](https://github.com/SuhZhang/ConvMatch) |
69
- | LoFTR | βœ… | CVPR | 2021 | [Link](https://github.com/zju3dv/LoFTR) |
70
- | SOLD2 | βœ… | CVPR | 2021 | [Link](https://github.com/cvg/SOLD2) |
71
- | LineTR | ❌ | RA-L | 2021 | [Link](https://github.com/yosungho/LineTR) |
72
- | DKM | βœ… | CVPR | 2023 | [Link](https://github.com/Parskatt/DKM) |
73
- | NCMNet | ❌ | CVPR | 2023 | [Link](https://github.com/xinliu29/NCMNet) |
74
- | TopicFM | βœ… | AAAI | 2023 | [Link](https://github.com/Vincentqyw/TopicFM) |
75
- | AspanFormer | βœ… | ECCV | 2022 | [Link](https://github.com/Vincentqyw/ml-aspanformer) |
76
- | LANet | βœ… | ACCV | 2022 | [Link](https://github.com/wangch-g/lanet) |
77
- | LISRD | ❌ | ECCV | 2022 | [Link](https://github.com/rpautrat/LISRD) |
78
- | REKD | ❌ | CVPR | 2022 | [Link](https://github.com/bluedream1121/REKD) |
79
- | CoTR | βœ… | ICCV | 2021 | [Link](https://github.com/ubc-vision/COTR) |
80
- | ALIKE | βœ… | TMM | 2022 | [Link](https://github.com/Shiaoming/ALIKE) |
81
- | RoRD | βœ… | IROS | 2021 | [Link](https://github.com/UditSinghParihar/RoRD) |
82
- | SGMNet | βœ… | ICCV | 2021 | [Link](https://github.com/vdvchen/SGMNet) |
83
- | SuperPoint | βœ… | CVPRW | 2018 | [Link](https://github.com/magicleap/SuperPointPretrainedNetwork) |
84
- | SuperGlue | βœ… | CVPR | 2020 | [Link](https://github.com/magicleap/SuperGluePretrainedNetwork) |
85
- | D2Net | βœ… | CVPR | 2019 | [Link](https://github.com/Vincentqyw/d2-net) |
86
- | R2D2 | βœ… | NeurIPS | 2019 | [Link](https://github.com/naver/r2d2) |
87
- | DISK | βœ… | NeurIPS | 2020 | [Link](https://github.com/cvlab-epfl/disk) |
88
- | Key.Net | ❌ | ICCV | 2019 | [Link](https://github.com/axelBarroso/Key.Net) |
89
- | OANet | ❌ | ICCV | 2019 | [Link](https://github.com/zjhthu/OANet) |
90
- | SOSNet | βœ… | CVPR | 2019 | [Link](https://github.com/scape-research/SOSNet) |
91
- | HardNet | βœ… | NeurIPS | 2017 | [Link](https://github.com/DagnyT/hardnet) |
92
- | SIFT | βœ… | IJCV | 2004 | [Link](https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html) |
93
-
94
 
95
  ## How to use
96
 
97
  ### HuggingFace / Lightning AI
98
 
99
- Just try it on <a href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
100
  <a target="_blank" href="https://lightning.ai/realcat/studios/image-matching-webui">
101
  <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/>
102
  </a>
@@ -104,25 +90,11 @@ Just try it on <a href='https://huggingface.co/spaces/Realcat/image-matching-web
104
  or deploy it locally following the instructions below.
105
 
106
  ### Requirements
107
-
108
- - [Python 3.9+](https://www.python.org/downloads/)
109
-
110
- #### Install from pip [NEW]
111
-
112
- Update: now support install from [pip](https://pypi.org/project/imcui), just run:
113
-
114
- ```bash
115
- pip install imcui
116
- ```
117
-
118
- #### Install from source
119
-
120
  ``` bash
121
  git clone --recursive https://github.com/Vincentqyw/image-matching-webui.git
122
  cd image-matching-webui
123
  conda env create -f environment.yaml
124
  conda activate imw
125
- pip install -e .
126
  ```
127
 
128
  or using [docker](https://hub.docker.com/r/vincentqin/image-matching-webui):
@@ -131,18 +103,10 @@ or using [docker](https://hub.docker.com/r/vincentqin/image-matching-webui):
131
  docker pull vincentqin/image-matching-webui:latest
132
  docker run -it -p 7860:7860 vincentqin/image-matching-webui:latest python app.py --server_name "0.0.0.0" --server_port=7860
133
  ```
134
-
135
- ### Deploy to Railway
136
-
137
- Deploy to [Railway](https://railway.app/), setting up a `Custom Start Command` in `Deploy` section:
138
-
139
- ``` bash
140
- python -m imcui.api.server
141
- ```
142
-
143
  ### Run demo
144
  ``` bash
145
- python app.py --config ./config/config.yaml
146
  ```
147
  then open http://localhost:7860 in your browser.
148
 
@@ -150,54 +114,28 @@ then open http://localhost:7860 in your browser.
150
 
151
  ### Add your own feature / matcher
152
 
153
- I provide an example to add local feature in [imcui/hloc/extractors/example.py](imcui/hloc/extractors/example.py). Then add feature settings in `confs` in file [imcui/hloc/extract_features.py](imcui/hloc/extract_features.py). Last step is adding some settings to `matcher_zoo` in file [imcui/ui/config.yaml](imcui/ui/config.yaml).
154
-
155
- ### Upload models
156
-
157
- IMCUI hosts all models on [Huggingface](https://huggingface.co/Realcat/imcui_checkpoints). You can upload your model to Huggingface and add it to the [Realcat/imcui_checkpoints](https://huggingface.co/Realcat/imcui_checkpoints) repository.
158
-
159
 
160
  ## Contributions welcome!
161
 
162
- External contributions are very much welcome. Please follow the [PEP8 style guidelines](https://www.python.org/dev/peps/pep-0008/) using a linter like flake8. This is a non-exhaustive list of features that might be valuable additions:
163
 
164
- - [x] support pip install command
165
- - [x] add [CPU CI](.github/workflows/ci.yml)
166
  - [x] add webcam support
167
  - [x] add [line feature matching](https://github.com/Vincentqyw/LineSegmentsDetection) algorithms
168
  - [x] example to add a new feature extractor / matcher
169
  - [x] ransac to filter outliers
170
- - [ ] add [rotation images](https://github.com/pidahbus/deep-image-orientation-angle-detection) options before matching
171
  - [ ] support export matches to colmap ([#issue 6](https://github.com/Vincentqyw/image-matching-webui/issues/6))
172
- - [x] add config file to set default parameters
173
- - [x] dynamically load models and reduce GPU overload
174
-
175
- Adding local features / matchers as submodules is very easy. For example, to add the [GlueStick](https://github.com/cvg/GlueStick):
176
-
177
- ``` bash
178
- git submodule add https://github.com/cvg/GlueStick.git imcui/third_party/GlueStick
179
- ```
180
 
181
- If remote submodule repositories are updated, don't forget to pull submodules with:
182
 
183
  ``` bash
184
- git submodule update --init --recursive # init and download
185
- git submodule update --remote # update
186
- ```
187
-
188
- if you only want to update one submodule, use `git submodule update --remote imcui/third_party/GlueStick`.
189
-
190
- To format code before committing, run:
191
-
192
- ```bash
193
- pre-commit run -a # Auto-checks and fixes
194
  ```
195
 
196
- ## Contributors
197
-
198
- <a href="https://github.com/Vincentqyw/image-matching-webui/graphs/contributors">
199
- <img src="https://contrib.rocks/image?repo=Vincentqyw/image-matching-webui" />
200
- </a>
201
 
202
  ## Resources
203
  - [Image Matching: Local Features & Beyond](https://image-matching-workshop.github.io)
@@ -214,4 +152,4 @@ This code is built based on [Hierarchical-Localization](https://github.com/cvg/H
214
  [stars-shield]: https://img.shields.io/github/stars/Vincentqyw/image-matching-webui.svg?style=for-the-badge
215
  [stars-url]: https://github.com/Vincentqyw/image-matching-webui/stargazers
216
  [issues-shield]: https://img.shields.io/github/issues/Vincentqyw/image-matching-webui.svg?style=for-the-badge
217
- [issues-url]: https://github.com/Vincentqyw/image-matching-webui/issues
 
4
  colorFrom: red
5
  colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 5.3.0
8
  app_file: app.py
9
  pinned: true
10
  license: apache-2.0
11
  ---
12
+
13
  [![Contributors][contributors-shield]][contributors-url]
14
  [![Forks][forks-shield]][forks-url]
15
  [![Stargazers][stars-shield]][stars-url]
16
  [![Issues][issues-shield]][issues-url]
17
 
18
  <p align="center">
19
+ <h1 align="center"><br><ins>Image Matching WebUI</ins><br>Identify matching points between two images</h1>
 
20
  </p>
 
 
 
 
 
 
 
 
21
 
22
  ## Description
23
 
24
+ This simple tool efficiently matches image pairs using multiple famous image matching algorithms. The tool features a Graphical User Interface (GUI) designed using [gradio](https://gradio.app/). You can effortlessly select two images and a matching algorithm and obtain a precise matching result.
25
  **Note**: the images source can be either local images or webcam images.
26
 
27
+ Try it on <a href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
28
+ <a target="_blank" href="https://lightning.ai/realcat/studios/image-matching-webui">
29
+ <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/>
30
+ </a>
31
 
32
  Here is a demo of the tool:
33
 
34
+ ![demo](assets/demo.gif)
35
 
36
  The tool currently supports various popular image matching algorithms, namely:
37
+ - [x] [EfficientLoFTR](https://github.com/zju3dv/EfficientLoFTR), CVPR 2024
38
+ - [x] [MASt3R](https://github.com/naver/mast3r), CVPR 2024
39
+ - [x] [DUSt3R](https://github.com/naver/dust3r), CVPR 2024
40
+ - [x] [OmniGlue](https://github.com/Vincentqyw/omniglue-onnx), CVPR 2024
41
+ - [x] [XFeat](https://github.com/verlab/accelerated_features), CVPR 2024
42
+ - [x] [RoMa](https://github.com/Vincentqyw/RoMa), CVPR 2024
43
+ - [x] [DeDoDe](https://github.com/Parskatt/DeDoDe), 3DV 2024
44
+ - [ ] [Mickey](https://github.com/nianticlabs/mickey), CVPR 2024
45
+ - [x] [GIM](https://github.com/xuelunshen/gim), ICLR 2024
46
+ - [ ] [DUSt3R](https://github.com/naver/dust3r), arXiv 2023
47
+ - [x] [LightGlue](https://github.com/cvg/LightGlue), ICCV 2023
48
+ - [x] [DarkFeat](https://github.com/THU-LYJ-Lab/DarkFeat), AAAI 2023
49
+ - [x] [SFD2](https://github.com/feixue94/sfd2), CVPR 2023
50
+ - [x] [IMP](https://github.com/feixue94/imp-release), CVPR 2023
51
+ - [ ] [ASTR](https://github.com/ASTR2023/ASTR), CVPR 2023
52
+ - [ ] [SEM](https://github.com/SEM2023/SEM), CVPR 2023
53
+ - [ ] [DeepLSD](https://github.com/cvg/DeepLSD), CVPR 2023
54
+ - [x] [GlueStick](https://github.com/cvg/GlueStick), ICCV 2023
55
+ - [ ] [ConvMatch](https://github.com/SuhZhang/ConvMatch), AAAI 2023
56
+ - [x] [LoFTR](https://github.com/zju3dv/LoFTR), CVPR 2021
57
+ - [x] [SOLD2](https://github.com/cvg/SOLD2), CVPR 2021
58
+ - [ ] [LineTR](https://github.com/yosungho/LineTR), RA-L 2021
59
+ - [x] [DKM](https://github.com/Parskatt/DKM), CVPR 2023
60
+ - [ ] [NCMNet](https://github.com/xinliu29/NCMNet), CVPR 2023
61
+ - [x] [TopicFM](https://github.com/Vincentqyw/TopicFM), AAAI 2023
62
+ - [x] [AspanFormer](https://github.com/Vincentqyw/ml-aspanformer), ECCV 2022
63
+ - [x] [LANet](https://github.com/wangch-g/lanet), ACCV 2022
64
+ - [ ] [LISRD](https://github.com/rpautrat/LISRD), ECCV 2022
65
+ - [ ] [REKD](https://github.com/bluedream1121/REKD), CVPR 2022
66
+ - [x] [CoTR](https://github.com/ubc-vision/COTR), ICCV 2021
67
+ - [x] [ALIKE](https://github.com/Shiaoming/ALIKE), TMM 2022
68
+ - [x] [RoRD](https://github.com/UditSinghParihar/RoRD), IROS 2021
69
+ - [x] [SGMNet](https://github.com/vdvchen/SGMNet), ICCV 2021
70
+ - [x] [SuperPoint](https://github.com/magicleap/SuperPointPretrainedNetwork), CVPRW 2018
71
+ - [x] [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork), CVPR 2020
72
+ - [x] [D2Net](https://github.com/Vincentqyw/d2-net), CVPR 2019
73
+ - [x] [R2D2](https://github.com/naver/r2d2), NeurIPS 2019
74
+ - [x] [DISK](https://github.com/cvlab-epfl/disk), NeurIPS 2020
75
+ - [ ] [Key.Net](https://github.com/axelBarroso/Key.Net), ICCV 2019
76
+ - [ ] [OANet](https://github.com/zjhthu/OANet), ICCV 2019
77
+ - [x] [SOSNet](https://github.com/scape-research/SOSNet), CVPR 2019
78
+ - [x] [HardNet](https://github.com/DagnyT/hardnet), NeurIPS 2017
79
+ - [x] [SIFT](https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html), IJCV 2004
 
 
 
 
 
 
 
80
 
81
  ## How to use
82
 
83
  ### HuggingFace / Lightning AI
84
 
85
+ Just try it on <a href='https://huggingface.co/spaces/Realcat/image-matching-webui'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
86
  <a target="_blank" href="https://lightning.ai/realcat/studios/image-matching-webui">
87
  <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/>
88
  </a>
 
90
  or deploy it locally following the instructions below.
91
 
92
  ### Requirements
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  ``` bash
94
  git clone --recursive https://github.com/Vincentqyw/image-matching-webui.git
95
  cd image-matching-webui
96
  conda env create -f environment.yaml
97
  conda activate imw
 
98
  ```
99
 
100
  or using [docker](https://hub.docker.com/r/vincentqin/image-matching-webui):
 
103
  docker pull vincentqin/image-matching-webui:latest
104
  docker run -it -p 7860:7860 vincentqin/image-matching-webui:latest python app.py --server_name "0.0.0.0" --server_port=7860
105
  ```
106
+
 
 
 
 
 
 
 
 
107
  ### Run demo
108
  ``` bash
109
+ python3 ./app.py
110
  ```
111
  then open http://localhost:7860 in your browser.
112
 
 
114
 
115
  ### Add your own feature / matcher
116
 
117
+ I provide an example to add local feature in [hloc/extractors/example.py](hloc/extractors/example.py). Then add feature settings in `confs` in file [hloc/extract_features.py](hloc/extract_features.py). Last step is adding some settings to `model_zoo` in file [ui/config.yaml](ui/config.yaml).
 
 
 
 
 
118
 
119
  ## Contributions welcome!
120
 
121
+ External contributions are very much welcome. Please follow the [PEP8 style guidelines](https://www.python.org/dev/peps/pep-0008/) using a linter like flake8 (reformat using command `python -m black .`). This is a non-exhaustive list of features that might be valuable additions:
122
 
 
 
123
  - [x] add webcam support
124
  - [x] add [line feature matching](https://github.com/Vincentqyw/LineSegmentsDetection) algorithms
125
  - [x] example to add a new feature extractor / matcher
126
  - [x] ransac to filter outliers
127
+ - [ ] add [rotation images](https://github.com/pidahbus/deep-image-orientation-angle-detection) options before matching
128
  - [ ] support export matches to colmap ([#issue 6](https://github.com/Vincentqyw/image-matching-webui/issues/6))
129
+ - [ ] add config file to set default parameters
130
+ - [ ] dynamically load models and reduce GPU overload
 
 
 
 
 
 
131
 
132
+ Adding local features / matchers as submodules is very easy. For example, to add the [GlueStick](https://github.com/cvg/GlueStick):
133
 
134
  ``` bash
135
+ git submodule add https://github.com/cvg/GlueStick.git third_party/GlueStick
 
 
 
 
 
 
 
 
 
136
  ```
137
 
138
+ If remote submodule repositories are updated, don't forget to pull submodules with `git submodule update --remote`, if you only want to update one submodule, use `git submodule update --remote third_party/GlueStick`.
 
 
 
 
139
 
140
  ## Resources
141
  - [Image Matching: Local Features & Beyond](https://image-matching-workshop.github.io)
 
152
  [stars-shield]: https://img.shields.io/github/stars/Vincentqyw/image-matching-webui.svg?style=for-the-badge
153
  [stars-url]: https://github.com/Vincentqyw/image-matching-webui/stargazers
154
  [issues-shield]: https://img.shields.io/github/issues/Vincentqyw/image-matching-webui.svg?style=for-the-badge
155
+ [issues-url]: https://github.com/Vincentqyw/image-matching-webui/issues
{imcui β†’ api}/__init__.py RENAMED
File without changes
{imcui/api β†’ api}/client.py RENAMED
@@ -1,232 +1,225 @@
1
- import argparse
2
- import base64
3
- import os
4
- import pickle
5
- import time
6
- from typing import Dict, List
7
-
8
- import cv2
9
- import numpy as np
10
- import requests
11
-
12
- ENDPOINT = "http://127.0.0.1:8001"
13
- if "REMOTE_URL_RAILWAY" in os.environ:
14
- ENDPOINT = os.environ["REMOTE_URL_RAILWAY"]
15
-
16
- print(f"API ENDPOINT: {ENDPOINT}")
17
-
18
- API_VERSION = f"{ENDPOINT}/version"
19
- API_URL_MATCH = f"{ENDPOINT}/v1/match"
20
- API_URL_EXTRACT = f"{ENDPOINT}/v1/extract"
21
-
22
-
23
- def read_image(path: str) -> str:
24
- """
25
- Read an image from a file, encode it as a JPEG and then as a base64 string.
26
-
27
- Args:
28
- path (str): The path to the image to read.
29
-
30
- Returns:
31
- str: The base64 encoded image.
32
- """
33
- # Read the image from the file
34
- img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
35
-
36
- # Encode the image as a png, NO COMPRESSION!!!
37
- retval, buffer = cv2.imencode(".png", img)
38
-
39
- # Encode the JPEG as a base64 string
40
- b64img = base64.b64encode(buffer).decode("utf-8")
41
-
42
- return b64img
43
-
44
-
45
- def do_api_requests(url=API_URL_EXTRACT, **kwargs):
46
- """
47
- Helper function to send an API request to the image matching service.
48
-
49
- Args:
50
- url (str): The URL of the API endpoint to use. Defaults to the
51
- feature extraction endpoint.
52
- **kwargs: Additional keyword arguments to pass to the API.
53
-
54
- Returns:
55
- List[Dict[str, np.ndarray]]: A list of dictionaries containing the
56
- extracted features. The keys are "keypoints", "descriptors", and
57
- "scores", and the values are ndarrays of shape (N, 2), (N, ?),
58
- and (N,), respectively.
59
- """
60
- # Set up the request body
61
- reqbody = {
62
- # List of image data base64 encoded
63
- "data": [],
64
- # List of maximum number of keypoints to extract from each image
65
- "max_keypoints": [100, 100],
66
- # List of timestamps for each image (not used?)
67
- "timestamps": ["0", "1"],
68
- # Whether to convert the images to grayscale
69
- "grayscale": 0,
70
- # List of image height and width
71
- "image_hw": [[640, 480], [320, 240]],
72
- # Type of feature to extract
73
- "feature_type": 0,
74
- # List of rotation angles for each image
75
- "rotates": [0.0, 0.0],
76
- # List of scale factors for each image
77
- "scales": [1.0, 1.0],
78
- # List of reference points for each image (not used)
79
- "reference_points": [[640, 480], [320, 240]],
80
- # Whether to binarize the descriptors
81
- "binarize": True,
82
- }
83
- # Update the request body with the additional keyword arguments
84
- reqbody.update(kwargs)
85
- try:
86
- # Send the request
87
- r = requests.post(url, json=reqbody)
88
- if r.status_code == 200:
89
- # Return the response
90
- return r.json()
91
- else:
92
- # Print an error message if the response code is not 200
93
- print(f"Error: Response code {r.status_code} - {r.text}")
94
- except Exception as e:
95
- # Print an error message if an exception occurs
96
- print(f"An error occurred: {e}")
97
-
98
-
99
- def send_request_match(path0: str, path1: str) -> Dict[str, np.ndarray]:
100
- """
101
- Send a request to the API to generate a match between two images.
102
-
103
- Args:
104
- path0 (str): The path to the first image.
105
- path1 (str): The path to the second image.
106
-
107
- Returns:
108
- Dict[str, np.ndarray]: A dictionary containing the generated matches.
109
- The keys are "keypoints0", "keypoints1", "matches0", and "matches1",
110
- and the values are ndarrays of shape (N, 2), (N, 2), (N, 2), and
111
- (N, 2), respectively.
112
- """
113
- files = {"image0": open(path0, "rb"), "image1": open(path1, "rb")}
114
- try:
115
- # TODO: replace files with post json
116
- response = requests.post(API_URL_MATCH, files=files)
117
- pred = {}
118
- if response.status_code == 200:
119
- pred = response.json()
120
- for key in list(pred.keys()):
121
- pred[key] = np.array(pred[key])
122
- else:
123
- print(f"Error: Response code {response.status_code} - {response.text}")
124
- finally:
125
- files["image0"].close()
126
- files["image1"].close()
127
- return pred
128
-
129
-
130
- def send_request_extract(
131
- input_images: str, viz: bool = False
132
- ) -> List[Dict[str, np.ndarray]]:
133
- """
134
- Send a request to the API to extract features from an image.
135
-
136
- Args:
137
- input_images (str): The path to the image.
138
-
139
- Returns:
140
- List[Dict[str, np.ndarray]]: A list of dictionaries containing the
141
- extracted features. The keys are "keypoints", "descriptors", and
142
- "scores", and the values are ndarrays of shape (N, 2), (N, 128),
143
- and (N,), respectively.
144
- """
145
- image_data = read_image(input_images)
146
- inputs = {
147
- "data": [image_data],
148
- }
149
- response = do_api_requests(
150
- url=API_URL_EXTRACT,
151
- **inputs,
152
- )
153
- # breakpoint()
154
- # print("Keypoints detected: {}".format(len(response[0]["keypoints"])))
155
-
156
- # draw matching, debug only
157
- if viz:
158
- from hloc.utils.viz import plot_keypoints
159
- from ui.viz import fig2im, plot_images
160
-
161
- kpts = np.array(response[0]["keypoints_orig"])
162
- if "image_orig" in response[0].keys():
163
- img_orig = np.array(["image_orig"])
164
-
165
- output_keypoints = plot_images([img_orig], titles="titles", dpi=300)
166
- plot_keypoints([kpts])
167
- output_keypoints = fig2im(output_keypoints)
168
- cv2.imwrite(
169
- "demo_match.jpg",
170
- output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
171
- )
172
- return response
173
-
174
-
175
- def get_api_version():
176
- try:
177
- response = requests.get(API_VERSION).json()
178
- print("API VERSION: {}".format(response["version"]))
179
- except Exception as e:
180
- print(f"An error occurred: {e}")
181
-
182
-
183
- if __name__ == "__main__":
184
- from pathlib import Path
185
-
186
- parser = argparse.ArgumentParser(
187
- description="Send text to stable audio server and receive generated audio."
188
- )
189
- parser.add_argument(
190
- "--image0",
191
- required=False,
192
- help="Path for the file's melody",
193
- default=str(
194
- Path(__file__).parents[1]
195
- / "datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg"
196
- ),
197
- )
198
- parser.add_argument(
199
- "--image1",
200
- required=False,
201
- help="Path for the file's melody",
202
- default=str(
203
- Path(__file__).parents[1]
204
- / "datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg"
205
- ),
206
- )
207
- args = parser.parse_args()
208
-
209
- # get api version
210
- get_api_version()
211
-
212
- # request match
213
- # for i in range(10):
214
- # t1 = time.time()
215
- # preds = send_request_match(args.image0, args.image1)
216
- # t2 = time.time()
217
- # print(
218
- # "Time cost1: {} seconds, matched: {}".format(
219
- # (t2 - t1), len(preds["mmkeypoints0_orig"])
220
- # )
221
- # )
222
-
223
- # request extract
224
- for i in range(1000):
225
- t1 = time.time()
226
- preds = send_request_extract(args.image0)
227
- t2 = time.time()
228
- print(f"Time cost2: {(t2 - t1)} seconds")
229
-
230
- # dump preds
231
- with open("preds.pkl", "wb") as f:
232
- pickle.dump(preds, f)
 
1
+ import argparse
2
+ import base64
3
+ import os
4
+ import pickle
5
+ import time
6
+ from typing import Dict, List
7
+
8
+ import cv2
9
+ import numpy as np
10
+ import requests
11
+
12
+ ENDPOINT = "http://127.0.0.1:8001"
13
+ if "REMOTE_URL_RAILWAY" in os.environ:
14
+ ENDPOINT = os.environ["REMOTE_URL_RAILWAY"]
15
+
16
+ print(f"API ENDPOINT: {ENDPOINT}")
17
+
18
+ API_VERSION = f"{ENDPOINT}/version"
19
+ API_URL_MATCH = f"{ENDPOINT}/v1/match"
20
+ API_URL_EXTRACT = f"{ENDPOINT}/v1/extract"
21
+
22
+
23
+ def read_image(path: str) -> str:
24
+ """
25
+ Read an image from a file, encode it as a JPEG and then as a base64 string.
26
+
27
+ Args:
28
+ path (str): The path to the image to read.
29
+
30
+ Returns:
31
+ str: The base64 encoded image.
32
+ """
33
+ # Read the image from the file
34
+ img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
35
+
36
+ # Encode the image as a png, NO COMPRESSION!!!
37
+ retval, buffer = cv2.imencode(".png", img)
38
+
39
+ # Encode the JPEG as a base64 string
40
+ b64img = base64.b64encode(buffer).decode("utf-8")
41
+
42
+ return b64img
43
+
44
+
45
+ def do_api_requests(url=API_URL_EXTRACT, **kwargs):
46
+ """
47
+ Helper function to send an API request to the image matching service.
48
+
49
+ Args:
50
+ url (str): The URL of the API endpoint to use. Defaults to the
51
+ feature extraction endpoint.
52
+ **kwargs: Additional keyword arguments to pass to the API.
53
+
54
+ Returns:
55
+ List[Dict[str, np.ndarray]]: A list of dictionaries containing the
56
+ extracted features. The keys are "keypoints", "descriptors", and
57
+ "scores", and the values are ndarrays of shape (N, 2), (N, ?),
58
+ and (N,), respectively.
59
+ """
60
+ # Set up the request body
61
+ reqbody = {
62
+ # List of image data base64 encoded
63
+ "data": [],
64
+ # List of maximum number of keypoints to extract from each image
65
+ "max_keypoints": [100, 100],
66
+ # List of timestamps for each image (not used?)
67
+ "timestamps": ["0", "1"],
68
+ # Whether to convert the images to grayscale
69
+ "grayscale": 0,
70
+ # List of image height and width
71
+ "image_hw": [[640, 480], [320, 240]],
72
+ # Type of feature to extract
73
+ "feature_type": 0,
74
+ # List of rotation angles for each image
75
+ "rotates": [0.0, 0.0],
76
+ # List of scale factors for each image
77
+ "scales": [1.0, 1.0],
78
+ # List of reference points for each image (not used)
79
+ "reference_points": [[640, 480], [320, 240]],
80
+ # Whether to binarize the descriptors
81
+ "binarize": True,
82
+ }
83
+ # Update the request body with the additional keyword arguments
84
+ reqbody.update(kwargs)
85
+ try:
86
+ # Send the request
87
+ r = requests.post(url, json=reqbody)
88
+ if r.status_code == 200:
89
+ # Return the response
90
+ return r.json()
91
+ else:
92
+ # Print an error message if the response code is not 200
93
+ print(f"Error: Response code {r.status_code} - {r.text}")
94
+ except Exception as e:
95
+ # Print an error message if an exception occurs
96
+ print(f"An error occurred: {e}")
97
+
98
+
99
+ def send_request_match(path0: str, path1: str) -> Dict[str, np.ndarray]:
100
+ """
101
+ Send a request to the API to generate a match between two images.
102
+
103
+ Args:
104
+ path0 (str): The path to the first image.
105
+ path1 (str): The path to the second image.
106
+
107
+ Returns:
108
+ Dict[str, np.ndarray]: A dictionary containing the generated matches.
109
+ The keys are "keypoints0", "keypoints1", "matches0", and "matches1",
110
+ and the values are ndarrays of shape (N, 2), (N, 2), (N, 2), and
111
+ (N, 2), respectively.
112
+ """
113
+ files = {"image0": open(path0, "rb"), "image1": open(path1, "rb")}
114
+ try:
115
+ # TODO: replace files with post json
116
+ response = requests.post(API_URL_MATCH, files=files)
117
+ pred = {}
118
+ if response.status_code == 200:
119
+ pred = response.json()
120
+ for key in list(pred.keys()):
121
+ pred[key] = np.array(pred[key])
122
+ else:
123
+ print(
124
+ f"Error: Response code {response.status_code} - {response.text}"
125
+ )
126
+ finally:
127
+ files["image0"].close()
128
+ files["image1"].close()
129
+ return pred
130
+
131
+
132
+ def send_request_extract(
133
+ input_images: str, viz: bool = False
134
+ ) -> List[Dict[str, np.ndarray]]:
135
+ """
136
+ Send a request to the API to extract features from an image.
137
+
138
+ Args:
139
+ input_images (str): The path to the image.
140
+
141
+ Returns:
142
+ List[Dict[str, np.ndarray]]: A list of dictionaries containing the
143
+ extracted features. The keys are "keypoints", "descriptors", and
144
+ "scores", and the values are ndarrays of shape (N, 2), (N, 128),
145
+ and (N,), respectively.
146
+ """
147
+ image_data = read_image(input_images)
148
+ inputs = {
149
+ "data": [image_data],
150
+ }
151
+ response = do_api_requests(
152
+ url=API_URL_EXTRACT,
153
+ **inputs,
154
+ )
155
+ print("Keypoints detected: {}".format(len(response[0]["keypoints"])))
156
+
157
+ # draw matching, debug only
158
+ if viz:
159
+ from hloc.utils.viz import plot_keypoints
160
+ from ui.viz import fig2im, plot_images
161
+
162
+ kpts = np.array(response[0]["keypoints_orig"])
163
+ if "image_orig" in response[0].keys():
164
+ img_orig = np.array(["image_orig"])
165
+
166
+ output_keypoints = plot_images([img_orig], titles="titles", dpi=300)
167
+ plot_keypoints([kpts])
168
+ output_keypoints = fig2im(output_keypoints)
169
+ cv2.imwrite(
170
+ "demo_match.jpg",
171
+ output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
172
+ )
173
+ return response
174
+
175
+
176
+ def get_api_version():
177
+ try:
178
+ response = requests.get(API_VERSION).json()
179
+ print("API VERSION: {}".format(response["version"]))
180
+ except Exception as e:
181
+ print(f"An error occurred: {e}")
182
+
183
+
184
+ if __name__ == "__main__":
185
+ parser = argparse.ArgumentParser(
186
+ description="Send text to stable audio server and receive generated audio."
187
+ )
188
+ parser.add_argument(
189
+ "--image0",
190
+ required=False,
191
+ help="Path for the file's melody",
192
+ default="datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg",
193
+ )
194
+ parser.add_argument(
195
+ "--image1",
196
+ required=False,
197
+ help="Path for the file's melody",
198
+ default="datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg",
199
+ )
200
+ args = parser.parse_args()
201
+
202
+ # get api version
203
+ get_api_version()
204
+
205
+ # request match
206
+ # for i in range(10):
207
+ # t1 = time.time()
208
+ # preds = send_request_match(args.image0, args.image1)
209
+ # t2 = time.time()
210
+ # print(
211
+ # "Time cost1: {} seconds, matched: {}".format(
212
+ # (t2 - t1), len(preds["mmkeypoints0_orig"])
213
+ # )
214
+ # )
215
+
216
+ # request extract
217
+ for i in range(10):
218
+ t1 = time.time()
219
+ preds = send_request_extract(args.image0)
220
+ t2 = time.time()
221
+ print(f"Time cost2: {(t2 - t1)} seconds")
222
+
223
+ # dump preds
224
+ with open("preds.pkl", "wb") as f:
225
+ pickle.dump(preds, f)
 
 
 
 
 
 
 
imcui/api/core.py β†’ api/server.py RENAMED
@@ -1,308 +1,499 @@
1
- # api.py
2
- import warnings
3
- from pathlib import Path
4
- from typing import Any, Dict, Optional
5
-
6
- import cv2
7
- import matplotlib.pyplot as plt
8
- import numpy as np
9
- import torch
10
-
11
- from ..hloc import extract_features, logger, match_dense, match_features
12
- from ..hloc.utils.viz import add_text, plot_keypoints
13
- from ..ui.utils import filter_matches, get_feature_model, get_model
14
- from ..ui.viz import display_matches, fig2im, plot_images
15
-
16
- warnings.simplefilter("ignore")
17
-
18
-
19
- class ImageMatchingAPI(torch.nn.Module):
20
- default_conf = {
21
- "ransac": {
22
- "enable": True,
23
- "estimator": "poselib",
24
- "geometry": "homography",
25
- "method": "RANSAC",
26
- "reproj_threshold": 3,
27
- "confidence": 0.9999,
28
- "max_iter": 10000,
29
- },
30
- }
31
-
32
- def __init__(
33
- self,
34
- conf: dict = {},
35
- device: str = "cpu",
36
- detect_threshold: float = 0.015,
37
- max_keypoints: int = 1024,
38
- match_threshold: float = 0.2,
39
- ) -> None:
40
- """
41
- Initializes an instance of the ImageMatchingAPI class.
42
-
43
- Args:
44
- conf (dict): A dictionary containing the configuration parameters.
45
- device (str, optional): The device to use for computation. Defaults to "cpu".
46
- detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015.
47
- max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024.
48
- match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2.
49
-
50
- Returns:
51
- None
52
- """
53
- super().__init__()
54
- self.device = device
55
- self.conf = {**self.default_conf, **conf}
56
- self._updata_config(detect_threshold, max_keypoints, match_threshold)
57
- self._init_models()
58
- if device == "cuda":
59
- memory_allocated = torch.cuda.memory_allocated(device)
60
- memory_reserved = torch.cuda.memory_reserved(device)
61
- logger.info(f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB")
62
- logger.info(f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB")
63
- self.pred = None
64
-
65
- def parse_match_config(self, conf):
66
- if conf["dense"]:
67
- return {
68
- **conf,
69
- "matcher": match_dense.confs.get(conf["matcher"]["model"]["name"]),
70
- "dense": True,
71
- }
72
- else:
73
- return {
74
- **conf,
75
- "feature": extract_features.confs.get(conf["feature"]["model"]["name"]),
76
- "matcher": match_features.confs.get(conf["matcher"]["model"]["name"]),
77
- "dense": False,
78
- }
79
-
80
- def _updata_config(
81
- self,
82
- detect_threshold: float = 0.015,
83
- max_keypoints: int = 1024,
84
- match_threshold: float = 0.2,
85
- ):
86
- self.dense = self.conf["dense"]
87
- if self.conf["dense"]:
88
- try:
89
- self.conf["matcher"]["model"]["match_threshold"] = match_threshold
90
- except TypeError as e:
91
- logger.error(e)
92
- else:
93
- self.conf["feature"]["model"]["max_keypoints"] = max_keypoints
94
- self.conf["feature"]["model"]["keypoint_threshold"] = detect_threshold
95
- self.extract_conf = self.conf["feature"]
96
-
97
- self.match_conf = self.conf["matcher"]
98
-
99
- def _init_models(self):
100
- # initialize matcher
101
- self.matcher = get_model(self.match_conf)
102
- # initialize extractor
103
- if self.dense:
104
- self.extractor = None
105
- else:
106
- self.extractor = get_feature_model(self.conf["feature"])
107
-
108
- def _forward(self, img0, img1):
109
- if self.dense:
110
- pred = match_dense.match_images(
111
- self.matcher,
112
- img0,
113
- img1,
114
- self.match_conf["preprocessing"],
115
- device=self.device,
116
- )
117
- last_fixed = "{}".format( # noqa: F841
118
- self.match_conf["model"]["name"]
119
- )
120
- else:
121
- pred0 = extract_features.extract(
122
- self.extractor, img0, self.extract_conf["preprocessing"]
123
- )
124
- pred1 = extract_features.extract(
125
- self.extractor, img1, self.extract_conf["preprocessing"]
126
- )
127
- pred = match_features.match_images(self.matcher, pred0, pred1)
128
- return pred
129
-
130
- def _convert_pred(self, pred):
131
- ret = {
132
- k: v.cpu().detach()[0].numpy() if isinstance(v, torch.Tensor) else v
133
- for k, v in pred.items()
134
- }
135
- ret = {
136
- k: v[0].cpu().detach().numpy() if isinstance(v, list) else v
137
- for k, v in ret.items()
138
- }
139
- return ret
140
-
141
- @torch.inference_mode()
142
- def extract(self, img0: np.ndarray, **kwargs) -> Dict[str, np.ndarray]:
143
- """Extract features from a single image.
144
-
145
- Args:
146
- img0 (np.ndarray): image
147
-
148
- Returns:
149
- Dict[str, np.ndarray]: feature dict
150
- """
151
-
152
- # setting prams
153
- self.extractor.conf["max_keypoints"] = kwargs.get("max_keypoints", 512)
154
- self.extractor.conf["keypoint_threshold"] = kwargs.get(
155
- "keypoint_threshold", 0.0
156
- )
157
-
158
- pred = extract_features.extract(
159
- self.extractor, img0, self.extract_conf["preprocessing"]
160
- )
161
- pred = self._convert_pred(pred)
162
- # back to origin scale
163
- s0 = pred["original_size"] / pred["size"]
164
- pred["keypoints_orig"] = (
165
- match_features.scale_keypoints(pred["keypoints"] + 0.5, s0) - 0.5
166
- )
167
- # TODO: rotate back
168
- binarize = kwargs.get("binarize", False)
169
- if binarize:
170
- assert "descriptors" in pred
171
- pred["descriptors"] = (pred["descriptors"] > 0).astype(np.uint8)
172
- pred["descriptors"] = pred["descriptors"].T # N x DIM
173
- return pred
174
-
175
- @torch.inference_mode()
176
- def forward(
177
- self,
178
- img0: np.ndarray,
179
- img1: np.ndarray,
180
- ) -> Dict[str, np.ndarray]:
181
- """
182
- Forward pass of the image matching API.
183
-
184
- Args:
185
- img0: A 3D NumPy array of shape (H, W, C) representing the first image.
186
- Values are in the range [0, 1] and are in RGB mode.
187
- img1: A 3D NumPy array of shape (H, W, C) representing the second image.
188
- Values are in the range [0, 1] and are in RGB mode.
189
-
190
- Returns:
191
- A dictionary containing the following keys:
192
- - image0_orig: The original image 0.
193
- - image1_orig: The original image 1.
194
- - keypoints0_orig: The keypoints detected in image 0.
195
- - keypoints1_orig: The keypoints detected in image 1.
196
- - mkeypoints0_orig: The raw matches between image 0 and image 1.
197
- - mkeypoints1_orig: The raw matches between image 1 and image 0.
198
- - mmkeypoints0_orig: The RANSAC inliers in image 0.
199
- - mmkeypoints1_orig: The RANSAC inliers in image 1.
200
- - mconf: The confidence scores for the raw matches.
201
- - mmconf: The confidence scores for the RANSAC inliers.
202
- """
203
- # Take as input a pair of images (not a batch)
204
- assert isinstance(img0, np.ndarray)
205
- assert isinstance(img1, np.ndarray)
206
- self.pred = self._forward(img0, img1)
207
- if self.conf["ransac"]["enable"]:
208
- self.pred = self._geometry_check(self.pred)
209
- return self.pred
210
-
211
- def _geometry_check(
212
- self,
213
- pred: Dict[str, Any],
214
- ) -> Dict[str, Any]:
215
- """
216
- Filter matches using RANSAC. If keypoints are available, filter by keypoints.
217
- If lines are available, filter by lines. If both keypoints and lines are
218
- available, filter by keypoints.
219
-
220
- Args:
221
- pred (Dict[str, Any]): dict of matches, including original keypoints.
222
- See :func:`filter_matches` for the expected keys.
223
-
224
- Returns:
225
- Dict[str, Any]: filtered matches
226
- """
227
- pred = filter_matches(
228
- pred,
229
- ransac_method=self.conf["ransac"]["method"],
230
- ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"],
231
- ransac_confidence=self.conf["ransac"]["confidence"],
232
- ransac_max_iter=self.conf["ransac"]["max_iter"],
233
- )
234
- return pred
235
-
236
- def visualize(
237
- self,
238
- log_path: Optional[Path] = None,
239
- ) -> None:
240
- """
241
- Visualize the matches.
242
-
243
- Args:
244
- log_path (Path, optional): The directory to save the images. Defaults to None.
245
-
246
- Returns:
247
- None
248
- """
249
- if self.conf["dense"]:
250
- postfix = str(self.conf["matcher"]["model"]["name"])
251
- else:
252
- postfix = "{}_{}".format(
253
- str(self.conf["feature"]["model"]["name"]),
254
- str(self.conf["matcher"]["model"]["name"]),
255
- )
256
- titles = [
257
- "Image 0 - Keypoints",
258
- "Image 1 - Keypoints",
259
- ]
260
- pred: Dict[str, Any] = self.pred
261
- image0: np.ndarray = pred["image0_orig"]
262
- image1: np.ndarray = pred["image1_orig"]
263
- output_keypoints: np.ndarray = plot_images(
264
- [image0, image1], titles=titles, dpi=300
265
- )
266
- if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
267
- plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
268
- text: str = (
269
- f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
270
- + f"# keypoints1: {len(pred['keypoints1_orig'])}"
271
- )
272
- add_text(0, text, fs=15)
273
- output_keypoints = fig2im(output_keypoints)
274
- # plot images with raw matches
275
- titles = [
276
- "Image 0 - Raw matched keypoints",
277
- "Image 1 - Raw matched keypoints",
278
- ]
279
- output_matches_raw, num_matches_raw = display_matches(
280
- pred, titles=titles, tag="KPTS_RAW"
281
- )
282
- # plot images with ransac matches
283
- titles = [
284
- "Image 0 - Ransac matched keypoints",
285
- "Image 1 - Ransac matched keypoints",
286
- ]
287
- output_matches_ransac, num_matches_ransac = display_matches(
288
- pred, titles=titles, tag="KPTS_RANSAC"
289
- )
290
- if log_path is not None:
291
- img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png"
292
- img_matches_raw_path: Path = log_path / f"img_matches_raw_{postfix}.png"
293
- img_matches_ransac_path: Path = (
294
- log_path / f"img_matches_ransac_{postfix}.png"
295
- )
296
- cv2.imwrite(
297
- str(img_keypoints_path),
298
- output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
299
- )
300
- cv2.imwrite(
301
- str(img_matches_raw_path),
302
- output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR
303
- )
304
- cv2.imwrite(
305
- str(img_matches_ransac_path),
306
- output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR
307
- )
308
- plt.close("all")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # server.py
2
+ import base64
3
+ import io
4
+ import sys
5
+ import warnings
6
+ from pathlib import Path
7
+ from typing import Any, Dict, Optional, Union
8
+
9
+ import cv2
10
+ import matplotlib.pyplot as plt
11
+ import numpy as np
12
+ import torch
13
+ import uvicorn
14
+ from fastapi import FastAPI, File, UploadFile
15
+ from fastapi.exceptions import HTTPException
16
+ from fastapi.responses import JSONResponse
17
+ from PIL import Image
18
+
19
+ sys.path.append(str(Path(__file__).parents[1]))
20
+
21
+ from api.types import ImagesInput
22
+ from hloc import DEVICE, extract_features, logger, match_dense, match_features
23
+ from hloc.utils.viz import add_text, plot_keypoints
24
+ from ui import get_version
25
+ from ui.utils import filter_matches, get_feature_model, get_model
26
+ from ui.viz import display_matches, fig2im, plot_images
27
+
28
+ warnings.simplefilter("ignore")
29
+
30
+
31
+ def decode_base64_to_image(encoding):
32
+ if encoding.startswith("data:image/"):
33
+ encoding = encoding.split(";")[1].split(",")[1]
34
+ try:
35
+ image = Image.open(io.BytesIO(base64.b64decode(encoding)))
36
+ return image
37
+ except Exception as e:
38
+ logger.warning(f"API cannot decode image: {e}")
39
+ raise HTTPException(
40
+ status_code=500, detail="Invalid encoded image"
41
+ ) from e
42
+
43
+
44
+ def to_base64_nparray(encoding: str) -> np.ndarray:
45
+ return np.array(decode_base64_to_image(encoding)).astype("uint8")
46
+
47
+
48
+ class ImageMatchingAPI(torch.nn.Module):
49
+ default_conf = {
50
+ "ransac": {
51
+ "enable": True,
52
+ "estimator": "poselib",
53
+ "geometry": "homography",
54
+ "method": "RANSAC",
55
+ "reproj_threshold": 3,
56
+ "confidence": 0.9999,
57
+ "max_iter": 10000,
58
+ },
59
+ }
60
+
61
+ def __init__(
62
+ self,
63
+ conf: dict = {},
64
+ device: str = "cpu",
65
+ detect_threshold: float = 0.015,
66
+ max_keypoints: int = 1024,
67
+ match_threshold: float = 0.2,
68
+ ) -> None:
69
+ """
70
+ Initializes an instance of the ImageMatchingAPI class.
71
+
72
+ Args:
73
+ conf (dict): A dictionary containing the configuration parameters.
74
+ device (str, optional): The device to use for computation. Defaults to "cpu".
75
+ detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015.
76
+ max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024.
77
+ match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2.
78
+
79
+ Returns:
80
+ None
81
+ """
82
+ super().__init__()
83
+ self.device = device
84
+ self.conf = {**self.default_conf, **conf}
85
+ self._updata_config(detect_threshold, max_keypoints, match_threshold)
86
+ self._init_models()
87
+ if device == "cuda":
88
+ memory_allocated = torch.cuda.memory_allocated(device)
89
+ memory_reserved = torch.cuda.memory_reserved(device)
90
+ logger.info(
91
+ f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB"
92
+ )
93
+ logger.info(
94
+ f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB"
95
+ )
96
+ self.pred = None
97
+
98
+ def parse_match_config(self, conf):
99
+ if conf["dense"]:
100
+ return {
101
+ **conf,
102
+ "matcher": match_dense.confs.get(
103
+ conf["matcher"]["model"]["name"]
104
+ ),
105
+ "dense": True,
106
+ }
107
+ else:
108
+ return {
109
+ **conf,
110
+ "feature": extract_features.confs.get(
111
+ conf["feature"]["model"]["name"]
112
+ ),
113
+ "matcher": match_features.confs.get(
114
+ conf["matcher"]["model"]["name"]
115
+ ),
116
+ "dense": False,
117
+ }
118
+
119
+ def _updata_config(
120
+ self,
121
+ detect_threshold: float = 0.015,
122
+ max_keypoints: int = 1024,
123
+ match_threshold: float = 0.2,
124
+ ):
125
+ self.dense = self.conf["dense"]
126
+ if self.conf["dense"]:
127
+ try:
128
+ self.conf["matcher"]["model"][
129
+ "match_threshold"
130
+ ] = match_threshold
131
+ except TypeError as e:
132
+ logger.error(e)
133
+ else:
134
+ self.conf["feature"]["model"]["max_keypoints"] = max_keypoints
135
+ self.conf["feature"]["model"][
136
+ "keypoint_threshold"
137
+ ] = detect_threshold
138
+ self.extract_conf = self.conf["feature"]
139
+
140
+ self.match_conf = self.conf["matcher"]
141
+
142
+ def _init_models(self):
143
+ # initialize matcher
144
+ self.matcher = get_model(self.match_conf)
145
+ # initialize extractor
146
+ if self.dense:
147
+ self.extractor = None
148
+ else:
149
+ self.extractor = get_feature_model(self.conf["feature"])
150
+
151
+ def _forward(self, img0, img1):
152
+ if self.dense:
153
+ pred = match_dense.match_images(
154
+ self.matcher,
155
+ img0,
156
+ img1,
157
+ self.match_conf["preprocessing"],
158
+ device=self.device,
159
+ )
160
+ last_fixed = "{}".format( # noqa: F841
161
+ self.match_conf["model"]["name"]
162
+ )
163
+ else:
164
+ pred0 = extract_features.extract(
165
+ self.extractor, img0, self.extract_conf["preprocessing"]
166
+ )
167
+ pred1 = extract_features.extract(
168
+ self.extractor, img1, self.extract_conf["preprocessing"]
169
+ )
170
+ pred = match_features.match_images(self.matcher, pred0, pred1)
171
+ return pred
172
+
173
+ @torch.inference_mode()
174
+ def extract(self, img0: np.ndarray, **kwargs) -> Dict[str, np.ndarray]:
175
+ """Extract features from a single image.
176
+
177
+ Args:
178
+ img0 (np.ndarray): image
179
+
180
+ Returns:
181
+ Dict[str, np.ndarray]: feature dict
182
+ """
183
+
184
+ # setting prams
185
+ self.extractor.conf["max_keypoints"] = kwargs.get("max_keypoints", 512)
186
+ self.extractor.conf["keypoint_threshold"] = kwargs.get(
187
+ "keypoint_threshold", 0.0
188
+ )
189
+
190
+ pred = extract_features.extract(
191
+ self.extractor, img0, self.extract_conf["preprocessing"]
192
+ )
193
+ pred = {
194
+ k: v.cpu().detach()[0].numpy() if isinstance(v, torch.Tensor) else v
195
+ for k, v in pred.items()
196
+ }
197
+ # back to origin scale
198
+ s0 = pred["original_size"] / pred["size"]
199
+ pred["keypoints_orig"] = (
200
+ match_features.scale_keypoints(pred["keypoints"] + 0.5, s0) - 0.5
201
+ )
202
+ # TODO: rotate back
203
+
204
+ binarize = kwargs.get("binarize", False)
205
+ if binarize:
206
+ assert "descriptors" in pred
207
+ pred["descriptors"] = (pred["descriptors"] > 0).astype(np.uint8)
208
+ pred["descriptors"] = pred["descriptors"].T # N x DIM
209
+ return pred
210
+
211
+ @torch.inference_mode()
212
+ def forward(
213
+ self,
214
+ img0: np.ndarray,
215
+ img1: np.ndarray,
216
+ ) -> Dict[str, np.ndarray]:
217
+ """
218
+ Forward pass of the image matching API.
219
+
220
+ Args:
221
+ img0: A 3D NumPy array of shape (H, W, C) representing the first image.
222
+ Values are in the range [0, 1] and are in RGB mode.
223
+ img1: A 3D NumPy array of shape (H, W, C) representing the second image.
224
+ Values are in the range [0, 1] and are in RGB mode.
225
+
226
+ Returns:
227
+ A dictionary containing the following keys:
228
+ - image0_orig: The original image 0.
229
+ - image1_orig: The original image 1.
230
+ - keypoints0_orig: The keypoints detected in image 0.
231
+ - keypoints1_orig: The keypoints detected in image 1.
232
+ - mkeypoints0_orig: The raw matches between image 0 and image 1.
233
+ - mkeypoints1_orig: The raw matches between image 1 and image 0.
234
+ - mmkeypoints0_orig: The RANSAC inliers in image 0.
235
+ - mmkeypoints1_orig: The RANSAC inliers in image 1.
236
+ - mconf: The confidence scores for the raw matches.
237
+ - mmconf: The confidence scores for the RANSAC inliers.
238
+ """
239
+ # Take as input a pair of images (not a batch)
240
+ assert isinstance(img0, np.ndarray)
241
+ assert isinstance(img1, np.ndarray)
242
+ self.pred = self._forward(img0, img1)
243
+ if self.conf["ransac"]["enable"]:
244
+ self.pred = self._geometry_check(self.pred)
245
+ return self.pred
246
+
247
+ def _geometry_check(
248
+ self,
249
+ pred: Dict[str, Any],
250
+ ) -> Dict[str, Any]:
251
+ """
252
+ Filter matches using RANSAC. If keypoints are available, filter by keypoints.
253
+ If lines are available, filter by lines. If both keypoints and lines are
254
+ available, filter by keypoints.
255
+
256
+ Args:
257
+ pred (Dict[str, Any]): dict of matches, including original keypoints.
258
+ See :func:`filter_matches` for the expected keys.
259
+
260
+ Returns:
261
+ Dict[str, Any]: filtered matches
262
+ """
263
+ pred = filter_matches(
264
+ pred,
265
+ ransac_method=self.conf["ransac"]["method"],
266
+ ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"],
267
+ ransac_confidence=self.conf["ransac"]["confidence"],
268
+ ransac_max_iter=self.conf["ransac"]["max_iter"],
269
+ )
270
+ return pred
271
+
272
+ def visualize(
273
+ self,
274
+ log_path: Optional[Path] = None,
275
+ ) -> None:
276
+ """
277
+ Visualize the matches.
278
+
279
+ Args:
280
+ log_path (Path, optional): The directory to save the images. Defaults to None.
281
+
282
+ Returns:
283
+ None
284
+ """
285
+ if self.conf["dense"]:
286
+ postfix = str(self.conf["matcher"]["model"]["name"])
287
+ else:
288
+ postfix = "{}_{}".format(
289
+ str(self.conf["feature"]["model"]["name"]),
290
+ str(self.conf["matcher"]["model"]["name"]),
291
+ )
292
+ titles = [
293
+ "Image 0 - Keypoints",
294
+ "Image 1 - Keypoints",
295
+ ]
296
+ pred: Dict[str, Any] = self.pred
297
+ image0: np.ndarray = pred["image0_orig"]
298
+ image1: np.ndarray = pred["image1_orig"]
299
+ output_keypoints: np.ndarray = plot_images(
300
+ [image0, image1], titles=titles, dpi=300
301
+ )
302
+ if (
303
+ "keypoints0_orig" in pred.keys()
304
+ and "keypoints1_orig" in pred.keys()
305
+ ):
306
+ plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
307
+ text: str = (
308
+ f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
309
+ + f"# keypoints1: {len(pred['keypoints1_orig'])}"
310
+ )
311
+ add_text(0, text, fs=15)
312
+ output_keypoints = fig2im(output_keypoints)
313
+ # plot images with raw matches
314
+ titles = [
315
+ "Image 0 - Raw matched keypoints",
316
+ "Image 1 - Raw matched keypoints",
317
+ ]
318
+ output_matches_raw, num_matches_raw = display_matches(
319
+ pred, titles=titles, tag="KPTS_RAW"
320
+ )
321
+ # plot images with ransac matches
322
+ titles = [
323
+ "Image 0 - Ransac matched keypoints",
324
+ "Image 1 - Ransac matched keypoints",
325
+ ]
326
+ output_matches_ransac, num_matches_ransac = display_matches(
327
+ pred, titles=titles, tag="KPTS_RANSAC"
328
+ )
329
+ if log_path is not None:
330
+ img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png"
331
+ img_matches_raw_path: Path = (
332
+ log_path / f"img_matches_raw_{postfix}.png"
333
+ )
334
+ img_matches_ransac_path: Path = (
335
+ log_path / f"img_matches_ransac_{postfix}.png"
336
+ )
337
+ cv2.imwrite(
338
+ str(img_keypoints_path),
339
+ output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
340
+ )
341
+ cv2.imwrite(
342
+ str(img_matches_raw_path),
343
+ output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR
344
+ )
345
+ cv2.imwrite(
346
+ str(img_matches_ransac_path),
347
+ output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR
348
+ )
349
+ plt.close("all")
350
+
351
+
352
+ class ImageMatchingService:
353
+ def __init__(self, conf: dict, device: str):
354
+ self.conf = conf
355
+ self.api = ImageMatchingAPI(conf=conf, device=device)
356
+ self.app = FastAPI()
357
+ self.register_routes()
358
+
359
+ def register_routes(self):
360
+
361
+ @self.app.get("/version")
362
+ async def version():
363
+ return {"version": get_version()}
364
+
365
+ @self.app.post("/v1/match")
366
+ async def match(
367
+ image0: UploadFile = File(...), image1: UploadFile = File(...)
368
+ ):
369
+ """
370
+ Handle the image matching request and return the processed result.
371
+
372
+ Args:
373
+ image0 (UploadFile): The first image file for matching.
374
+ image1 (UploadFile): The second image file for matching.
375
+
376
+ Returns:
377
+ JSONResponse: A JSON response containing the filtered match results
378
+ or an error message in case of failure.
379
+ """
380
+ try:
381
+ # Load the images from the uploaded files
382
+ image0_array = self.load_image(image0)
383
+ image1_array = self.load_image(image1)
384
+
385
+ # Perform image matching using the API
386
+ output = self.api(image0_array, image1_array)
387
+
388
+ # Keys to skip in the output
389
+ skip_keys = ["image0_orig", "image1_orig"]
390
+
391
+ # Postprocess the output to filter unwanted data
392
+ pred = self.postprocess(output, skip_keys)
393
+
394
+ # Return the filtered prediction as a JSON response
395
+ return JSONResponse(content=pred)
396
+ except Exception as e:
397
+ # Return an error message with status code 500 in case of exception
398
+ return JSONResponse(content={"error": str(e)}, status_code=500)
399
+
400
+ @self.app.post("/v1/extract")
401
+ async def extract(input_info: ImagesInput):
402
+ """
403
+ Extract keypoints and descriptors from images.
404
+
405
+ Args:
406
+ input_info: An object containing the image data and options.
407
+
408
+ Returns:
409
+ A list of dictionaries containing the keypoints and descriptors.
410
+ """
411
+ try:
412
+ preds = []
413
+ for i, input_image in enumerate(input_info.data):
414
+ # Load the image from the input data
415
+ image_array = to_base64_nparray(input_image)
416
+ # Extract keypoints and descriptors
417
+ output = self.api.extract(
418
+ image_array,
419
+ max_keypoints=input_info.max_keypoints[i],
420
+ binarize=input_info.binarize,
421
+ )
422
+ # Do not return the original image and image_orig
423
+ # skip_keys = ["image", "image_orig"]
424
+ skip_keys = []
425
+
426
+ # Postprocess the output
427
+ pred = self.postprocess(output, skip_keys)
428
+ preds.append(pred)
429
+ # Return the list of extracted features
430
+ return JSONResponse(content=preds)
431
+ except Exception as e:
432
+ # Return an error message if an exception occurs
433
+ return JSONResponse(content={"error": str(e)}, status_code=500)
434
+
435
+ def load_image(self, file_path: Union[str, UploadFile]) -> np.ndarray:
436
+ """
437
+ Reads an image from a file path or an UploadFile object.
438
+
439
+ Args:
440
+ file_path: A file path or an UploadFile object.
441
+
442
+ Returns:
443
+ A numpy array representing the image.
444
+ """
445
+ if isinstance(file_path, str):
446
+ file_path = Path(file_path).resolve(strict=False)
447
+ else:
448
+ file_path = file_path.file
449
+ with Image.open(file_path) as img:
450
+ image_array = np.array(img)
451
+ return image_array
452
+
453
+ def postprocess(
454
+ self, output: dict, skip_keys: list, binarize: bool = True
455
+ ) -> dict:
456
+ pred = {}
457
+ for key, value in output.items():
458
+ if key in skip_keys:
459
+ continue
460
+ if isinstance(value, np.ndarray):
461
+ pred[key] = value.tolist()
462
+ return pred
463
+
464
+ def run(self, host: str = "0.0.0.0", port: int = 8001):
465
+ uvicorn.run(self.app, host=host, port=port)
466
+
467
+
468
+ if __name__ == "__main__":
469
+ conf = {
470
+ "feature": {
471
+ "output": "feats-superpoint-n4096-rmax1600",
472
+ "model": {
473
+ "name": "superpoint",
474
+ "nms_radius": 3,
475
+ "max_keypoints": 4096,
476
+ "keypoint_threshold": 0.005,
477
+ },
478
+ "preprocessing": {
479
+ "grayscale": True,
480
+ "force_resize": True,
481
+ "resize_max": 1600,
482
+ "width": 640,
483
+ "height": 480,
484
+ "dfactor": 8,
485
+ },
486
+ },
487
+ "matcher": {
488
+ "output": "matches-NN-mutual",
489
+ "model": {
490
+ "name": "nearest_neighbor",
491
+ "do_mutual_check": True,
492
+ "match_threshold": 0.2,
493
+ },
494
+ },
495
+ "dense": False,
496
+ }
497
+
498
+ service = ImageMatchingService(conf=conf, device=DEVICE)
499
+ service.run()
{imcui/api β†’ api}/test/CMakeLists.txt RENAMED
@@ -6,12 +6,11 @@ find_package(OpenCV REQUIRED)
6
 
7
  find_package(Boost REQUIRED COMPONENTS system)
8
  if(Boost_FOUND)
9
- include_directories(${Boost_INCLUDE_DIRS})
10
  endif()
11
 
12
  add_executable(client client.cpp)
13
 
14
- target_include_directories(client PRIVATE ${Boost_LIBRARIES}
15
- ${OpenCV_INCLUDE_DIRS})
16
 
17
  target_link_libraries(client PRIVATE curl jsoncpp b64 ${OpenCV_LIBS})
 
6
 
7
  find_package(Boost REQUIRED COMPONENTS system)
8
  if(Boost_FOUND)
9
+ include_directories(${Boost_INCLUDE_DIRS})
10
  endif()
11
 
12
  add_executable(client client.cpp)
13
 
14
+ target_include_directories(client PRIVATE ${Boost_LIBRARIES} ${OpenCV_INCLUDE_DIRS})
 
15
 
16
  target_link_libraries(client PRIVATE curl jsoncpp b64 ${OpenCV_LIBS})
{imcui/api β†’ api}/test/build_and_run.sh RENAMED
@@ -1,16 +1,16 @@
1
- # g++ main.cpp -I/usr/include/opencv4 -lcurl -ljsoncpp -lb64 -lopencv_core -lopencv_imgcodecs -o main
2
- # sudo apt-get update
3
- # sudo apt-get install libboost-all-dev -y
4
- # sudo apt-get install libcurl4-openssl-dev libjsoncpp-dev libb64-dev libopencv-dev -y
5
-
6
- cd build
7
- cmake ..
8
- make -j12
9
-
10
- echo " ======== RUN DEMO ========"
11
-
12
- ./client
13
-
14
- echo " ======== END DEMO ========"
15
-
16
- cd ..
 
1
+ # g++ main.cpp -I/usr/include/opencv4 -lcurl -ljsoncpp -lb64 -lopencv_core -lopencv_imgcodecs -o main
2
+ # sudo apt-get update
3
+ # sudo apt-get install libboost-all-dev -y
4
+ # sudo apt-get install libcurl4-openssl-dev libjsoncpp-dev libb64-dev libopencv-dev -y
5
+
6
+ cd build
7
+ cmake ..
8
+ make -j12
9
+
10
+ echo " ======== RUN DEMO ========"
11
+
12
+ ./client
13
+
14
+ echo " ======== END DEMO ========"
15
+
16
+ cd ..
{imcui/api β†’ api}/test/client.cpp RENAMED
@@ -1,81 +1,84 @@
1
- #include <curl/curl.h>
2
- #include <opencv2/opencv.hpp>
3
- #include "helper.h"
4
-
5
- int main() {
6
- std::string img_path =
7
- "../../../datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg";
8
- cv::Mat original_img = cv::imread(img_path, cv::IMREAD_GRAYSCALE);
9
-
10
- if (original_img.empty()) {
11
- throw std::runtime_error("Failed to decode image");
12
- }
13
-
14
- // Convert the image to Base64
15
- std::string base64_img = image_to_base64(original_img);
16
-
17
- // Convert the Base64 back to an image
18
- cv::Mat decoded_img = base64_to_image(base64_img);
19
- cv::imwrite("decoded_image.jpg", decoded_img);
20
- cv::imwrite("original_img.jpg", original_img);
21
-
22
- // The images should be identical
23
- if (cv::countNonZero(original_img != decoded_img) != 0) {
24
- std::cerr << "The images are not identical" << std::endl;
25
- return -1;
26
- } else {
27
- std::cout << "The images are identical!" << std::endl;
28
- }
29
-
30
- // construct params
31
- APIParams params{.data = {base64_img},
32
- .max_keypoints = {100, 100},
33
- .timestamps = {"0", "1"},
34
- .grayscale = {0},
35
- .image_hw = {{480, 640}, {240, 320}},
36
- .feature_type = 0,
37
- .rotates = {0.0f, 0.0f},
38
- .scales = {1.0f, 1.0f},
39
- .reference_points = {{1.23e+2f, 1.2e+1f},
40
- {5.0e-1f, 3.0e-1f},
41
- {2.3e+2f, 2.2e+1f},
42
- {6.0e-1f, 4.0e-1f}},
43
- .binarize = {1}};
44
-
45
- KeyPointResults kpts_results;
46
-
47
- // Convert the parameters to JSON
48
- Json::Value jsonData = paramsToJson(params);
49
- std::string url = "http://127.0.0.1:8001/v1/extract";
50
- Json::StreamWriterBuilder writer;
51
- std::string output = Json::writeString(writer, jsonData);
52
-
53
- CURL* curl;
54
- CURLcode res;
55
- std::string readBuffer;
56
-
57
- curl_global_init(CURL_GLOBAL_DEFAULT);
58
- curl = curl_easy_init();
59
- if (curl) {
60
- struct curl_slist* hs = NULL;
61
- hs = curl_slist_append(hs, "Content-Type: application/json");
62
- curl_easy_setopt(curl, CURLOPT_HTTPHEADER, hs);
63
- curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
64
- curl_easy_setopt(curl, CURLOPT_POSTFIELDS, output.c_str());
65
- curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, WriteCallback);
66
- curl_easy_setopt(curl, CURLOPT_WRITEDATA, &readBuffer);
67
- res = curl_easy_perform(curl);
68
-
69
- if (res != CURLE_OK)
70
- fprintf(
71
- stderr, "curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
72
- else {
73
- // std::cout << "Response from server: " << readBuffer << std::endl;
74
- kpts_results = decode_response(readBuffer);
75
- }
76
- curl_easy_cleanup(curl);
77
- }
78
- curl_global_cleanup();
79
-
80
- return 0;
81
- }
 
 
 
 
1
+ #include <curl/curl.h>
2
+ #include <opencv2/opencv.hpp>
3
+ #include "helper.h"
4
+
5
+ int main() {
6
+ std::string img_path = "../../../datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg";
7
+ cv::Mat original_img = cv::imread(img_path, cv::IMREAD_GRAYSCALE);
8
+
9
+ if (original_img.empty()) {
10
+ throw std::runtime_error("Failed to decode image");
11
+ }
12
+
13
+ // Convert the image to Base64
14
+ std::string base64_img = image_to_base64(original_img);
15
+
16
+ // Convert the Base64 back to an image
17
+ cv::Mat decoded_img = base64_to_image(base64_img);
18
+ cv::imwrite("decoded_image.jpg", decoded_img);
19
+ cv::imwrite("original_img.jpg", original_img);
20
+
21
+ // The images should be identical
22
+ if (cv::countNonZero(original_img != decoded_img) != 0) {
23
+ std::cerr << "The images are not identical" << std::endl;
24
+ return -1;
25
+ } else {
26
+ std::cout << "The images are identical!" << std::endl;
27
+ }
28
+
29
+ // construct params
30
+ APIParams params{
31
+ .data = {base64_img},
32
+ .max_keypoints = {100, 100},
33
+ .timestamps = {"0", "1"},
34
+ .grayscale = {0},
35
+ .image_hw = {{480, 640}, {240, 320}},
36
+ .feature_type = 0,
37
+ .rotates = {0.0f, 0.0f},
38
+ .scales = {1.0f, 1.0f},
39
+ .reference_points = {
40
+ {1.23e+2f, 1.2e+1f},
41
+ {5.0e-1f, 3.0e-1f},
42
+ {2.3e+2f, 2.2e+1f},
43
+ {6.0e-1f, 4.0e-1f}
44
+ },
45
+ .binarize = {1}
46
+ };
47
+
48
+ KeyPointResults kpts_results;
49
+
50
+ // Convert the parameters to JSON
51
+ Json::Value jsonData = paramsToJson(params);
52
+ std::string url = "http://127.0.0.1:8001/v1/extract";
53
+ Json::StreamWriterBuilder writer;
54
+ std::string output = Json::writeString(writer, jsonData);
55
+
56
+ CURL* curl;
57
+ CURLcode res;
58
+ std::string readBuffer;
59
+
60
+ curl_global_init(CURL_GLOBAL_DEFAULT);
61
+ curl = curl_easy_init();
62
+ if (curl) {
63
+ struct curl_slist* hs = NULL;
64
+ hs = curl_slist_append(hs, "Content-Type: application/json");
65
+ curl_easy_setopt(curl, CURLOPT_HTTPHEADER, hs);
66
+ curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
67
+ curl_easy_setopt(curl, CURLOPT_POSTFIELDS, output.c_str());
68
+ curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, WriteCallback);
69
+ curl_easy_setopt(curl, CURLOPT_WRITEDATA, &readBuffer);
70
+ res = curl_easy_perform(curl);
71
+
72
+ if (res != CURLE_OK)
73
+ fprintf(stderr, "curl_easy_perform() failed: %s\n",
74
+ curl_easy_strerror(res));
75
+ else {
76
+ // std::cout << "Response from server: " << readBuffer << std::endl;
77
+ kpts_results = decode_response(readBuffer);
78
+ }
79
+ curl_easy_cleanup(curl);
80
+ }
81
+ curl_global_cleanup();
82
+
83
+ return 0;
84
+ }
{imcui/api β†’ api}/test/helper.h RENAMED
@@ -1,405 +1,410 @@
1
-
2
- #include <b64/encode.h>
3
- #include <fstream>
4
- #include <jsoncpp/json/json.h>
5
- #include <opencv2/opencv.hpp>
6
- #include <sstream>
7
- #include <vector>
8
-
9
- // base64 to image
10
- #include <boost/archive/iterators/base64_from_binary.hpp>
11
- #include <boost/archive/iterators/binary_from_base64.hpp>
12
- #include <boost/archive/iterators/transform_width.hpp>
13
-
14
- /// Parameters used in the API
15
- struct APIParams {
16
- /// A list of images, base64 encoded
17
- std::vector<std::string> data;
18
-
19
- /// The maximum number of keypoints to detect for each image
20
- std::vector<int> max_keypoints;
21
-
22
- /// The timestamps of the images
23
- std::vector<std::string> timestamps;
24
-
25
- /// Whether to convert the images to grayscale
26
- bool grayscale;
27
-
28
- /// The height and width of each image
29
- std::vector<std::vector<int>> image_hw;
30
-
31
- /// The type of feature detector to use
32
- int feature_type;
33
-
34
- /// The rotations of the images
35
- std::vector<double> rotates;
36
-
37
- /// The scales of the images
38
- std::vector<double> scales;
39
-
40
- /// The reference points of the images
41
- std::vector<std::vector<float>> reference_points;
42
-
43
- /// Whether to binarize the descriptors
44
- bool binarize;
45
- };
46
-
47
- /**
48
- * @brief Contains the results of a keypoint detector.
49
- *
50
- * @details Stores the keypoints and descriptors for each image.
51
- */
52
- class KeyPointResults {
53
- public:
54
- KeyPointResults() {
55
- }
56
-
57
- /**
58
- * @brief Constructor.
59
- *
60
- * @param kp The keypoints for each image.
61
- */
62
- KeyPointResults(const std::vector<std::vector<cv::KeyPoint>>& kp,
63
- const std::vector<cv::Mat>& desc)
64
- : keypoints(kp), descriptors(desc) {
65
- }
66
-
67
- /**
68
- * @brief Append keypoints to the result.
69
- *
70
- * @param kpts The keypoints to append.
71
- */
72
- inline void append_keypoints(std::vector<cv::KeyPoint>& kpts) {
73
- keypoints.emplace_back(kpts);
74
- }
75
-
76
- /**
77
- * @brief Append descriptors to the result.
78
- *
79
- * @param desc The descriptors to append.
80
- */
81
- inline void append_descriptors(cv::Mat& desc) {
82
- descriptors.emplace_back(desc);
83
- }
84
-
85
- /**
86
- * @brief Get the keypoints.
87
- *
88
- * @return The keypoints.
89
- */
90
- inline std::vector<std::vector<cv::KeyPoint>> get_keypoints() {
91
- return keypoints;
92
- }
93
-
94
- /**
95
- * @brief Get the descriptors.
96
- *
97
- * @return The descriptors.
98
- */
99
- inline std::vector<cv::Mat> get_descriptors() {
100
- return descriptors;
101
- }
102
-
103
- private:
104
- std::vector<std::vector<cv::KeyPoint>> keypoints;
105
- std::vector<cv::Mat> descriptors;
106
- std::vector<std::vector<float>> scores;
107
- };
108
-
109
- /**
110
- * @brief Decodes a base64 encoded string.
111
- *
112
- * @param base64 The base64 encoded string to decode.
113
- * @return The decoded string.
114
- */
115
- std::string base64_decode(const std::string& base64) {
116
- using namespace boost::archive::iterators;
117
- using It = transform_width<binary_from_base64<std::string::const_iterator>, 8, 6>;
118
-
119
- // Find the position of the last non-whitespace character
120
- auto end = base64.find_last_not_of(" \t\n\r");
121
- if (end != std::string::npos) {
122
- // Move one past the last non-whitespace character
123
- end += 1;
124
- }
125
-
126
- // Decode the base64 string and return the result
127
- return std::string(It(base64.begin()), It(base64.begin() + end));
128
- }
129
-
130
- /**
131
- * @brief Decodes a base64 string into an OpenCV image
132
- *
133
- * @param base64 The base64 encoded string
134
- * @return The decoded OpenCV image
135
- */
136
- cv::Mat base64_to_image(const std::string& base64) {
137
- // Decode the base64 string
138
- std::string decodedStr = base64_decode(base64);
139
-
140
- // Decode the image
141
- std::vector<uchar> data(decodedStr.begin(), decodedStr.end());
142
- cv::Mat img = cv::imdecode(data, cv::IMREAD_GRAYSCALE);
143
-
144
- // Check for errors
145
- if (img.empty()) {
146
- throw std::runtime_error("Failed to decode image");
147
- }
148
-
149
- return img;
150
- }
151
-
152
- /**
153
- * @brief Encodes an OpenCV image into a base64 string
154
- *
155
- * This function takes an OpenCV image and encodes it into a base64 string.
156
- * The image is first encoded as a PNG image, and then the resulting
157
- * bytes are encoded as a base64 string.
158
- *
159
- * @param img The OpenCV image
160
- * @return The base64 encoded string
161
- *
162
- * @throws std::runtime_error if the image is empty or encoding fails
163
- */
164
- std::string image_to_base64(cv::Mat& img) {
165
- if (img.empty()) {
166
- throw std::runtime_error("Failed to read image");
167
- }
168
-
169
- // Encode the image as a PNG
170
- std::vector<uchar> buf;
171
- if (!cv::imencode(".png", img, buf)) {
172
- throw std::runtime_error("Failed to encode image");
173
- }
174
-
175
- // Encode the bytes as a base64 string
176
- using namespace boost::archive::iterators;
177
- using It =
178
- base64_from_binary<transform_width<std::vector<uchar>::const_iterator, 6, 8>>;
179
- std::string base64(It(buf.begin()), It(buf.end()));
180
-
181
- // Pad the string with '=' characters to a multiple of 4 bytes
182
- base64.append((3 - buf.size() % 3) % 3, '=');
183
-
184
- return base64;
185
- }
186
-
187
- /**
188
- * @brief Callback function for libcurl to write data to a string
189
- *
190
- * This function is used as a callback for libcurl to write data to a string.
191
- * It takes the contents, size, and nmemb as parameters, and writes the data to
192
- * the string.
193
- *
194
- * @param contents The data to write
195
- * @param size The size of the data
196
- * @param nmemb The number of members in the data
197
- * @param s The string to write the data to
198
- * @return The number of bytes written
199
- */
200
- size_t WriteCallback(void* contents, size_t size, size_t nmemb, std::string* s) {
201
- size_t newLength = size * nmemb;
202
- try {
203
- // Resize the string to fit the new data
204
- s->resize(s->size() + newLength);
205
- } catch (std::bad_alloc& e) {
206
- // If there's an error allocating memory, return 0
207
- return 0;
208
- }
209
-
210
- // Copy the data to the string
211
- std::copy(static_cast<const char*>(contents),
212
- static_cast<const char*>(contents) + newLength,
213
- s->begin() + s->size() - newLength);
214
- return newLength;
215
- }
216
-
217
- // Helper functions
218
-
219
- /**
220
- * @brief Helper function to convert a type to a Json::Value
221
- *
222
- * This function takes a value of type T and converts it to a Json::Value.
223
- * It is used to simplify the process of converting a type to a Json::Value.
224
- *
225
- * @param val The value to convert
226
- * @return The converted Json::Value
227
- */
228
- template <typename T> Json::Value toJson(const T& val) {
229
- return Json::Value(val);
230
- }
231
-
232
- /**
233
- * @brief Converts a vector to a Json::Value
234
- *
235
- * This function takes a vector of type T and converts it to a Json::Value.
236
- * Each element in the vector is appended to the Json::Value array.
237
- *
238
- * @param vec The vector to convert to Json::Value
239
- * @return The Json::Value representing the vector
240
- */
241
- template <typename T> Json::Value vectorToJson(const std::vector<T>& vec) {
242
- Json::Value json(Json::arrayValue);
243
- for (const auto& item : vec) {
244
- json.append(item);
245
- }
246
- return json;
247
- }
248
-
249
- /**
250
- * @brief Converts a nested vector to a Json::Value
251
- *
252
- * This function takes a nested vector of type T and converts it to a
253
- * Json::Value. Each sub-vector is converted to a Json::Value array and appended
254
- * to the main Json::Value array.
255
- *
256
- * @param vec The nested vector to convert to Json::Value
257
- * @return The Json::Value representing the nested vector
258
- */
259
- template <typename T>
260
- Json::Value nestedVectorToJson(const std::vector<std::vector<T>>& vec) {
261
- Json::Value json(Json::arrayValue);
262
- for (const auto& subVec : vec) {
263
- json.append(vectorToJson(subVec));
264
- }
265
- return json;
266
- }
267
-
268
- /**
269
- * @brief Converts the APIParams struct to a Json::Value
270
- *
271
- * This function takes an APIParams struct and converts it to a Json::Value.
272
- * The Json::Value is a JSON object with the following fields:
273
- * - data: a JSON array of base64 encoded images
274
- * - max_keypoints: a JSON array of integers, max number of keypoints for each
275
- * image
276
- * - timestamps: a JSON array of timestamps, one for each image
277
- * - grayscale: a JSON boolean, whether to convert images to grayscale
278
- * - image_hw: a nested JSON array, each sub-array contains the height and width
279
- * of an image
280
- * - feature_type: a JSON integer, the type of feature detector to use
281
- * - rotates: a JSON array of doubles, the rotation of each image
282
- * - scales: a JSON array of doubles, the scale of each image
283
- * - reference_points: a nested JSON array, each sub-array contains the
284
- * reference points of an image
285
- * - binarize: a JSON boolean, whether to binarize the descriptors
286
- *
287
- * @param params The APIParams struct to convert
288
- * @return The Json::Value representing the APIParams struct
289
- */
290
- Json::Value paramsToJson(const APIParams& params) {
291
- Json::Value json;
292
- json["data"] = vectorToJson(params.data);
293
- json["max_keypoints"] = vectorToJson(params.max_keypoints);
294
- json["timestamps"] = vectorToJson(params.timestamps);
295
- json["grayscale"] = toJson(params.grayscale);
296
- json["image_hw"] = nestedVectorToJson(params.image_hw);
297
- json["feature_type"] = toJson(params.feature_type);
298
- json["rotates"] = vectorToJson(params.rotates);
299
- json["scales"] = vectorToJson(params.scales);
300
- json["reference_points"] = nestedVectorToJson(params.reference_points);
301
- json["binarize"] = toJson(params.binarize);
302
- return json;
303
- }
304
-
305
- template <typename T> cv::Mat jsonToMat(Json::Value json) {
306
- int rows = json.size();
307
- int cols = json[0].size();
308
-
309
- // Create a single array to hold all the data.
310
- std::vector<T> data;
311
- data.reserve(rows * cols);
312
-
313
- for (int i = 0; i < rows; i++) {
314
- for (int j = 0; j < cols; j++) {
315
- data.push_back(static_cast<T>(json[i][j].asInt()));
316
- }
317
- }
318
-
319
- // Create a cv::Mat object that points to the data.
320
- cv::Mat mat(rows, cols, CV_8UC1,
321
- data.data()); // Change the type if necessary.
322
- // cv::Mat mat(cols, rows,CV_8UC1, data.data()); // Change the type if
323
- // necessary.
324
-
325
- return mat;
326
- }
327
-
328
- /**
329
- * @brief Decodes the response of the server and prints the keypoints
330
- *
331
- * This function takes the response of the server, a JSON string, and decodes
332
- * it. It then prints the keypoints and draws them on the original image.
333
- *
334
- * @param response The response of the server
335
- * @return The keypoints and descriptors
336
- */
337
- KeyPointResults decode_response(const std::string& response, bool viz = true) {
338
- Json::CharReaderBuilder builder;
339
- Json::CharReader* reader = builder.newCharReader();
340
-
341
- Json::Value jsonData;
342
- std::string errors;
343
-
344
- // Parse the JSON response
345
- bool parsingSuccessful = reader->parse(
346
- response.c_str(), response.c_str() + response.size(), &jsonData, &errors);
347
- delete reader;
348
-
349
- if (!parsingSuccessful) {
350
- // Handle error
351
- std::cout << "Failed to parse the JSON, errors:" << std::endl;
352
- std::cout << errors << std::endl;
353
- return KeyPointResults();
354
- }
355
-
356
- KeyPointResults kpts_results;
357
-
358
- // Iterate over the images
359
- for (const auto& jsonItem : jsonData) {
360
- auto jkeypoints = jsonItem["keypoints"];
361
- auto jkeypoints_orig = jsonItem["keypoints_orig"];
362
- auto jdescriptors = jsonItem["descriptors"];
363
- auto jscores = jsonItem["scores"];
364
- auto jimageSize = jsonItem["image_size"];
365
- auto joriginalSize = jsonItem["original_size"];
366
- auto jsize = jsonItem["size"];
367
-
368
- std::vector<cv::KeyPoint> vkeypoints;
369
- std::vector<float> vscores;
370
-
371
- // Iterate over the keypoints
372
- int counter = 0;
373
- for (const auto& keypoint : jkeypoints_orig) {
374
- if (counter < 10) {
375
- // Print the first 10 keypoints
376
- std::cout << keypoint[0].asFloat() << ", " << keypoint[1].asFloat()
377
- << std::endl;
378
- }
379
- counter++;
380
- // Convert the Json::Value to a cv::KeyPoint
381
- vkeypoints.emplace_back(
382
- cv::KeyPoint(keypoint[0].asFloat(), keypoint[1].asFloat(), 0.0));
383
- }
384
-
385
- if (viz && jsonItem.isMember("image_orig")) {
386
- auto jimg_orig = jsonItem["image_orig"];
387
- cv::Mat img = jsonToMat<uchar>(jimg_orig);
388
- cv::imwrite("viz_image_orig.jpg", img);
389
-
390
- // Draw keypoints on the image
391
- cv::Mat imgWithKeypoints;
392
- cv::drawKeypoints(img, vkeypoints, imgWithKeypoints, cv::Scalar(0, 0, 255));
393
-
394
- // Write the image with keypoints
395
- std::string filename = "viz_image_orig_keypoints.jpg";
396
- cv::imwrite(filename, imgWithKeypoints);
397
- }
398
-
399
- // Iterate over the descriptors
400
- cv::Mat descriptors = jsonToMat<uchar>(jdescriptors);
401
- kpts_results.append_keypoints(vkeypoints);
402
- kpts_results.append_descriptors(descriptors);
403
- }
404
- return kpts_results;
405
- }
 
 
 
 
 
 
1
+
2
+ #include <sstream>
3
+ #include <fstream>
4
+ #include <vector>
5
+ #include <b64/encode.h>
6
+ #include <jsoncpp/json/json.h>
7
+ #include <opencv2/opencv.hpp>
8
+
9
+ // base64 to image
10
+ #include <boost/archive/iterators/binary_from_base64.hpp>
11
+ #include <boost/archive/iterators/transform_width.hpp>
12
+ #include <boost/archive/iterators/base64_from_binary.hpp>
13
+
14
+ /// Parameters used in the API
15
+ struct APIParams {
16
+ /// A list of images, base64 encoded
17
+ std::vector<std::string> data;
18
+
19
+ /// The maximum number of keypoints to detect for each image
20
+ std::vector<int> max_keypoints;
21
+
22
+ /// The timestamps of the images
23
+ std::vector<std::string> timestamps;
24
+
25
+ /// Whether to convert the images to grayscale
26
+ bool grayscale;
27
+
28
+ /// The height and width of each image
29
+ std::vector<std::vector<int>> image_hw;
30
+
31
+ /// The type of feature detector to use
32
+ int feature_type;
33
+
34
+ /// The rotations of the images
35
+ std::vector<double> rotates;
36
+
37
+ /// The scales of the images
38
+ std::vector<double> scales;
39
+
40
+ /// The reference points of the images
41
+ std::vector<std::vector<float>> reference_points;
42
+
43
+ /// Whether to binarize the descriptors
44
+ bool binarize;
45
+ };
46
+
47
+ /**
48
+ * @brief Contains the results of a keypoint detector.
49
+ *
50
+ * @details Stores the keypoints and descriptors for each image.
51
+ */
52
+ class KeyPointResults {
53
+ public:
54
+ KeyPointResults() {}
55
+
56
+ /**
57
+ * @brief Constructor.
58
+ *
59
+ * @param kp The keypoints for each image.
60
+ */
61
+ KeyPointResults(const std::vector<std::vector<cv::KeyPoint>>& kp,
62
+ const std::vector<cv::Mat>& desc)
63
+ : keypoints(kp), descriptors(desc) {}
64
+
65
+ /**
66
+ * @brief Append keypoints to the result.
67
+ *
68
+ * @param kpts The keypoints to append.
69
+ */
70
+ inline void append_keypoints(std::vector<cv::KeyPoint>& kpts) {
71
+ keypoints.emplace_back(kpts);
72
+ }
73
+
74
+ /**
75
+ * @brief Append descriptors to the result.
76
+ *
77
+ * @param desc The descriptors to append.
78
+ */
79
+ inline void append_descriptors(cv::Mat& desc) {
80
+ descriptors.emplace_back(desc);
81
+ }
82
+
83
+ /**
84
+ * @brief Get the keypoints.
85
+ *
86
+ * @return The keypoints.
87
+ */
88
+ inline std::vector<std::vector<cv::KeyPoint>> get_keypoints() {
89
+ return keypoints;
90
+ }
91
+
92
+ /**
93
+ * @brief Get the descriptors.
94
+ *
95
+ * @return The descriptors.
96
+ */
97
+ inline std::vector<cv::Mat> get_descriptors() {
98
+ return descriptors;
99
+ }
100
+
101
+ private:
102
+ std::vector<std::vector<cv::KeyPoint>> keypoints;
103
+ std::vector<cv::Mat> descriptors;
104
+ std::vector<std::vector<float>> scores;
105
+ };
106
+
107
+
108
+ /**
109
+ * @brief Decodes a base64 encoded string.
110
+ *
111
+ * @param base64 The base64 encoded string to decode.
112
+ * @return The decoded string.
113
+ */
114
+ std::string base64_decode(const std::string& base64) {
115
+ using namespace boost::archive::iterators;
116
+ using It = transform_width<binary_from_base64<std::string::const_iterator>, 8, 6>;
117
+
118
+ // Find the position of the last non-whitespace character
119
+ auto end = base64.find_last_not_of(" \t\n\r");
120
+ if (end != std::string::npos) {
121
+ // Move one past the last non-whitespace character
122
+ end += 1;
123
+ }
124
+
125
+ // Decode the base64 string and return the result
126
+ return std::string(It(base64.begin()), It(base64.begin() + end));
127
+ }
128
+
129
+
130
+
131
+ /**
132
+ * @brief Decodes a base64 string into an OpenCV image
133
+ *
134
+ * @param base64 The base64 encoded string
135
+ * @return The decoded OpenCV image
136
+ */
137
+ cv::Mat base64_to_image(const std::string& base64) {
138
+ // Decode the base64 string
139
+ std::string decodedStr = base64_decode(base64);
140
+
141
+ // Decode the image
142
+ std::vector<uchar> data(decodedStr.begin(), decodedStr.end());
143
+ cv::Mat img = cv::imdecode(data, cv::IMREAD_GRAYSCALE);
144
+
145
+ // Check for errors
146
+ if (img.empty()) {
147
+ throw std::runtime_error("Failed to decode image");
148
+ }
149
+
150
+ return img;
151
+ }
152
+
153
+
154
+ /**
155
+ * @brief Encodes an OpenCV image into a base64 string
156
+ *
157
+ * This function takes an OpenCV image and encodes it into a base64 string.
158
+ * The image is first encoded as a PNG image, and then the resulting
159
+ * bytes are encoded as a base64 string.
160
+ *
161
+ * @param img The OpenCV image
162
+ * @return The base64 encoded string
163
+ *
164
+ * @throws std::runtime_error if the image is empty or encoding fails
165
+ */
166
+ std::string image_to_base64(cv::Mat &img) {
167
+ if (img.empty()) {
168
+ throw std::runtime_error("Failed to read image");
169
+ }
170
+
171
+ // Encode the image as a PNG
172
+ std::vector<uchar> buf;
173
+ if (!cv::imencode(".png", img, buf)) {
174
+ throw std::runtime_error("Failed to encode image");
175
+ }
176
+
177
+ // Encode the bytes as a base64 string
178
+ using namespace boost::archive::iterators;
179
+ using It = base64_from_binary<transform_width<std::vector<uchar>::const_iterator, 6, 8>>;
180
+ std::string base64(It(buf.begin()), It(buf.end()));
181
+
182
+ // Pad the string with '=' characters to a multiple of 4 bytes
183
+ base64.append((3 - buf.size() % 3) % 3, '=');
184
+
185
+ return base64;
186
+ }
187
+
188
+
189
+ /**
190
+ * @brief Callback function for libcurl to write data to a string
191
+ *
192
+ * This function is used as a callback for libcurl to write data to a string.
193
+ * It takes the contents, size, and nmemb as parameters, and writes the data to
194
+ * the string.
195
+ *
196
+ * @param contents The data to write
197
+ * @param size The size of the data
198
+ * @param nmemb The number of members in the data
199
+ * @param s The string to write the data to
200
+ * @return The number of bytes written
201
+ */
202
+ size_t WriteCallback(void* contents, size_t size, size_t nmemb, std::string* s) {
203
+ size_t newLength = size * nmemb;
204
+ try {
205
+ // Resize the string to fit the new data
206
+ s->resize(s->size() + newLength);
207
+ } catch (std::bad_alloc& e) {
208
+ // If there's an error allocating memory, return 0
209
+ return 0;
210
+ }
211
+
212
+ // Copy the data to the string
213
+ std::copy(static_cast<const char*>(contents),
214
+ static_cast<const char*>(contents) + newLength,
215
+ s->begin() + s->size() - newLength);
216
+ return newLength;
217
+ }
218
+
219
+ // Helper functions
220
+
221
+ /**
222
+ * @brief Helper function to convert a type to a Json::Value
223
+ *
224
+ * This function takes a value of type T and converts it to a Json::Value.
225
+ * It is used to simplify the process of converting a type to a Json::Value.
226
+ *
227
+ * @param val The value to convert
228
+ * @return The converted Json::Value
229
+ */
230
+ template <typename T>
231
+ Json::Value toJson(const T& val) {
232
+ return Json::Value(val);
233
+ }
234
+
235
+ /**
236
+ * @brief Converts a vector to a Json::Value
237
+ *
238
+ * This function takes a vector of type T and converts it to a Json::Value.
239
+ * Each element in the vector is appended to the Json::Value array.
240
+ *
241
+ * @param vec The vector to convert to Json::Value
242
+ * @return The Json::Value representing the vector
243
+ */
244
+ template <typename T>
245
+ Json::Value vectorToJson(const std::vector<T>& vec) {
246
+ Json::Value json(Json::arrayValue);
247
+ for (const auto& item : vec) {
248
+ json.append(item);
249
+ }
250
+ return json;
251
+ }
252
+
253
+ /**
254
+ * @brief Converts a nested vector to a Json::Value
255
+ *
256
+ * This function takes a nested vector of type T and converts it to a Json::Value.
257
+ * Each sub-vector is converted to a Json::Value array and appended to the main Json::Value array.
258
+ *
259
+ * @param vec The nested vector to convert to Json::Value
260
+ * @return The Json::Value representing the nested vector
261
+ */
262
+ template <typename T>
263
+ Json::Value nestedVectorToJson(const std::vector<std::vector<T>>& vec) {
264
+ Json::Value json(Json::arrayValue);
265
+ for (const auto& subVec : vec) {
266
+ json.append(vectorToJson(subVec));
267
+ }
268
+ return json;
269
+ }
270
+
271
+
272
+
273
+ /**
274
+ * @brief Converts the APIParams struct to a Json::Value
275
+ *
276
+ * This function takes an APIParams struct and converts it to a Json::Value.
277
+ * The Json::Value is a JSON object with the following fields:
278
+ * - data: a JSON array of base64 encoded images
279
+ * - max_keypoints: a JSON array of integers, max number of keypoints for each image
280
+ * - timestamps: a JSON array of timestamps, one for each image
281
+ * - grayscale: a JSON boolean, whether to convert images to grayscale
282
+ * - image_hw: a nested JSON array, each sub-array contains the height and width of an image
283
+ * - feature_type: a JSON integer, the type of feature detector to use
284
+ * - rotates: a JSON array of doubles, the rotation of each image
285
+ * - scales: a JSON array of doubles, the scale of each image
286
+ * - reference_points: a nested JSON array, each sub-array contains the reference points of an image
287
+ * - binarize: a JSON boolean, whether to binarize the descriptors
288
+ *
289
+ * @param params The APIParams struct to convert
290
+ * @return The Json::Value representing the APIParams struct
291
+ */
292
+ Json::Value paramsToJson(const APIParams& params) {
293
+ Json::Value json;
294
+ json["data"] = vectorToJson(params.data);
295
+ json["max_keypoints"] = vectorToJson(params.max_keypoints);
296
+ json["timestamps"] = vectorToJson(params.timestamps);
297
+ json["grayscale"] = toJson(params.grayscale);
298
+ json["image_hw"] = nestedVectorToJson(params.image_hw);
299
+ json["feature_type"] = toJson(params.feature_type);
300
+ json["rotates"] = vectorToJson(params.rotates);
301
+ json["scales"] = vectorToJson(params.scales);
302
+ json["reference_points"] = nestedVectorToJson(params.reference_points);
303
+ json["binarize"] = toJson(params.binarize);
304
+ return json;
305
+ }
306
+
307
+ template<typename T>
308
+ cv::Mat jsonToMat(Json::Value json) {
309
+ int rows = json.size();
310
+ int cols = json[0].size();
311
+
312
+ // Create a single array to hold all the data.
313
+ std::vector<T> data;
314
+ data.reserve(rows * cols);
315
+
316
+ for (int i = 0; i < rows; i++) {
317
+ for (int j = 0; j < cols; j++) {
318
+ data.push_back(static_cast<T>(json[i][j].asInt()));
319
+ }
320
+ }
321
+
322
+ // Create a cv::Mat object that points to the data.
323
+ cv::Mat mat(rows, cols, CV_8UC1, data.data()); // Change the type if necessary.
324
+ // cv::Mat mat(cols, rows,CV_8UC1, data.data()); // Change the type if necessary.
325
+
326
+ return mat;
327
+ }
328
+
329
+
330
+
331
+ /**
332
+ * @brief Decodes the response of the server and prints the keypoints
333
+ *
334
+ * This function takes the response of the server, a JSON string, and decodes
335
+ * it. It then prints the keypoints and draws them on the original image.
336
+ *
337
+ * @param response The response of the server
338
+ * @return The keypoints and descriptors
339
+ */
340
+ KeyPointResults decode_response(const std::string& response, bool viz=true) {
341
+ Json::CharReaderBuilder builder;
342
+ Json::CharReader* reader = builder.newCharReader();
343
+
344
+ Json::Value jsonData;
345
+ std::string errors;
346
+
347
+ // Parse the JSON response
348
+ bool parsingSuccessful = reader->parse(response.c_str(),
349
+ response.c_str() + response.size(), &jsonData, &errors);
350
+ delete reader;
351
+
352
+ if (!parsingSuccessful) {
353
+ // Handle error
354
+ std::cout << "Failed to parse the JSON, errors:" << std::endl;
355
+ std::cout << errors << std::endl;
356
+ return KeyPointResults();
357
+ }
358
+
359
+ KeyPointResults kpts_results;
360
+
361
+ // Iterate over the images
362
+ for (const auto& jsonItem : jsonData) {
363
+ auto jkeypoints = jsonItem["keypoints"];
364
+ auto jkeypoints_orig = jsonItem["keypoints_orig"];
365
+ auto jdescriptors = jsonItem["descriptors"];
366
+ auto jscores = jsonItem["scores"];
367
+ auto jimageSize = jsonItem["image_size"];
368
+ auto joriginalSize = jsonItem["original_size"];
369
+ auto jsize = jsonItem["size"];
370
+
371
+ std::vector<cv::KeyPoint> vkeypoints;
372
+ std::vector<float> vscores;
373
+
374
+ // Iterate over the keypoints
375
+ int counter = 0;
376
+ for (const auto& keypoint : jkeypoints_orig) {
377
+ if (counter < 10) {
378
+ // Print the first 10 keypoints
379
+ std::cout << keypoint[0].asFloat() << ", "
380
+ << keypoint[1].asFloat() << std::endl;
381
+ }
382
+ counter++;
383
+ // Convert the Json::Value to a cv::KeyPoint
384
+ vkeypoints.emplace_back(cv::KeyPoint(keypoint[0].asFloat(),
385
+ keypoint[1].asFloat(), 0.0));
386
+ }
387
+
388
+ if (viz && jsonItem.isMember("image_orig")) {
389
+
390
+ auto jimg_orig = jsonItem["image_orig"];
391
+ cv::Mat img = jsonToMat<uchar>(jimg_orig);
392
+ cv::imwrite("viz_image_orig.jpg", img);
393
+
394
+ // Draw keypoints on the image
395
+ cv::Mat imgWithKeypoints;
396
+ cv::drawKeypoints(img, vkeypoints,
397
+ imgWithKeypoints, cv::Scalar(0, 0, 255));
398
+
399
+ // Write the image with keypoints
400
+ std::string filename = "viz_image_orig_keypoints.jpg";
401
+ cv::imwrite(filename, imgWithKeypoints);
402
+ }
403
+
404
+ // Iterate over the descriptors
405
+ cv::Mat descriptors = jsonToMat<uchar>(jdescriptors);
406
+ kpts_results.append_keypoints(vkeypoints);
407
+ kpts_results.append_descriptors(descriptors);
408
+ }
409
+ return kpts_results;
410
+ }
imcui/api/__init__.py β†’ api/types.py RENAMED
@@ -1,47 +1,16 @@
1
- import base64
2
- import io
3
- from typing import List
4
-
5
- import numpy as np
6
- from fastapi.exceptions import HTTPException
7
- from PIL import Image
8
- from pydantic import BaseModel
9
-
10
- from ..hloc import logger
11
- from .core import ImageMatchingAPI
12
-
13
-
14
- class ImagesInput(BaseModel):
15
- data: List[str] = []
16
- max_keypoints: List[int] = []
17
- timestamps: List[str] = []
18
- grayscale: bool = False
19
- image_hw: List[List[int]] = [[], []]
20
- feature_type: int = 0
21
- rotates: List[float] = []
22
- scales: List[float] = []
23
- reference_points: List[List[float]] = []
24
- binarize: bool = False
25
-
26
-
27
- def decode_base64_to_image(encoding):
28
- if encoding.startswith("data:image/"):
29
- encoding = encoding.split(";")[1].split(",")[1]
30
- try:
31
- image = Image.open(io.BytesIO(base64.b64decode(encoding)))
32
- return image
33
- except Exception as e:
34
- logger.warning(f"API cannot decode image: {e}")
35
- raise HTTPException(status_code=500, detail="Invalid encoded image") from e
36
-
37
-
38
- def to_base64_nparray(encoding: str) -> np.ndarray:
39
- return np.array(decode_base64_to_image(encoding)).astype("uint8")
40
-
41
-
42
- __all__ = [
43
- "ImageMatchingAPI",
44
- "ImagesInput",
45
- "decode_base64_to_image",
46
- "to_base64_nparray",
47
- ]
 
1
+ from typing import List
2
+
3
+ from pydantic import BaseModel
4
+
5
+
6
+ class ImagesInput(BaseModel):
7
+ data: List[str] = []
8
+ max_keypoints: List[int] = []
9
+ timestamps: List[str] = []
10
+ grayscale: bool = False
11
+ image_hw: List[List[int]] = [[], []]
12
+ feature_type: int = 0
13
+ rotates: List[float] = []
14
+ scales: List[float] = []
15
+ reference_points: List[List[float]] = []
16
+ binarize: bool = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import argparse
2
  from pathlib import Path
3
- from imcui.ui.app_class import ImageMatchingApp
4
 
5
  if __name__ == "__main__":
6
  parser = argparse.ArgumentParser()
@@ -19,13 +19,10 @@ if __name__ == "__main__":
19
  parser.add_argument(
20
  "--config",
21
  type=str,
22
- default=Path(__file__).parent / "config/config.yaml",
23
  help="config file",
24
  )
25
  args = parser.parse_args()
26
  ImageMatchingApp(
27
- args.server_name,
28
- args.server_port,
29
- config=args.config,
30
- example_data_root=Path("imcui/datasets"),
31
  ).run()
 
1
  import argparse
2
  from pathlib import Path
3
+ from ui.app_class import ImageMatchingApp
4
 
5
  if __name__ == "__main__":
6
  parser = argparse.ArgumentParser()
 
19
  parser.add_argument(
20
  "--config",
21
  type=str,
22
+ default=Path(__file__).parent / "ui/config.yaml",
23
  help="config file",
24
  )
25
  args = parser.parse_args()
26
  ImageMatchingApp(
27
+ args.server_name, args.server_port, config=args.config
 
 
 
28
  ).run()
build_docker.sh CHANGED
@@ -1,3 +1,3 @@
1
  docker build -t image-matching-webui:latest . --no-cache
2
  docker tag image-matching-webui:latest vincentqin/image-matching-webui:latest
3
- docker push vincentqin/image-matching-webui:latest
 
1
  docker build -t image-matching-webui:latest . --no-cache
2
  docker tag image-matching-webui:latest vincentqin/image-matching-webui:latest
3
+ docker push vincentqin/image-matching-webui:latest
{imcui/datasets β†’ datasets}/.gitignore RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/README.md RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/02928139_3448003521.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/03903474_1471484089.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/10265353_3838484249.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/17295357_9106075285.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/32809961_8274055477.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/44120379_8371960244.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/51091044_3486849416.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/60584745_2207571072.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/71295362_4051449754.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping/93341989_396310999.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot135.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot180.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot225.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot270.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot315.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot135.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot180.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot225.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot270.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot315.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot45.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/03903474_1471484089_rot90.jpg RENAMED
File without changes
{imcui/datasets β†’ datasets}/sacre_coeur/mapping_rot/10265353_3838484249_rot135.jpg RENAMED
File without changes