File size: 6,496 Bytes
17a7426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import sys
import time
from pathlib import Path
from typing import Literal, Optional

import lightning as L
import torch
from lightning.fabric.plugins import BitsandbytesPrecision
from lightning.fabric.strategies import FSDPStrategy

# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))

from generate.base import generate
from lit_gpt import Tokenizer
from lit_gpt.lora import GPT, Block, Config, merge_lora_weights
from lit_gpt.utils import check_valid_checkpoint_dir, get_default_supported_precision, gptq_quantization, lazy_load
from scripts.prepare_alpaca import generate_prompt

lora_r = 8
lora_alpha = 16
lora_dropout = 0.05
lora_query = True
lora_key = False
lora_value = True
lora_projection = False
lora_mlp = False
lora_head = False


def main(
    prompt: str = "What food do llamas eat?",
    input: str = "",
    lora_path: Path = Path("out/lora/alpaca/lit_model_lora_finetuned.pth"),
    checkpoint_dir: Path = Path("checkpoints/stabilityai/stablelm-base-alpha-3b"),
    quantize: Optional[Literal["bnb.nf4", "bnb.nf4-dq", "bnb.fp4", "bnb.fp4-dq", "bnb.int8", "gptq.int4"]] = None,
    max_new_tokens: int = 100,
    top_k: Optional[int] = 200,
    temperature: float = 0.8,
    strategy: str = "auto",
    devices: int = 1,
    precision: Optional[str] = None,
) -> None:
    """Generates a response based on a given instruction and an optional input.
    This script will only work with checkpoints from the instruction-tuned GPT-LoRA model.
    See `finetune/lora.py`.

    Args:
        prompt: The prompt/instruction (Alpaca style).
        input: Optional input (Alpaca style).
        lora_path: Path to the checkpoint with trained adapter weights, which are the output of
            `finetune/lora.py`.
        checkpoint_dir: The path to the checkpoint folder with pretrained GPT weights.
        quantize: Whether to quantize the model and using which method:
            - bnb.nf4, bnb.nf4-dq, bnb.fp4, bnb.fp4-dq: 4-bit quantization from bitsandbytes
            - bnb.int8: 8-bit quantization from bitsandbytes
            - gptq.int4: 4-bit quantization from GPTQ
            for more details, see https://github.com/Lightning-AI/lit-gpt/blob/main/tutorials/quantize.md
        max_new_tokens: The number of generation steps to take.
        top_k: The number of top most probable tokens to consider in the sampling process.
        temperature: A value controlling the randomness of the sampling process. Higher values result in more random
            samples.
        strategy: Indicates the Fabric strategy setting to use.
        devices: How many devices to use.
        precision: Indicates the Fabric precision setting to use.
    """
    precision = precision or get_default_supported_precision(training=False)

    plugins = None
    if quantize is not None:
        if devices > 1:
            raise NotImplementedError(
                "Quantization is currently not supported for multi-GPU training. Please set devices=1 when using the"
                " --quantize flag."
            )
        if quantize.startswith("bnb."):
            if "mixed" in precision:
                raise ValueError("Quantization and mixed precision is not supported.")
            dtype = {"16-true": torch.float16, "bf16-true": torch.bfloat16, "32-true": torch.float32}[precision]
            plugins = BitsandbytesPrecision(quantize[4:], dtype)
            precision = None

    if strategy == "fsdp":
        strategy = FSDPStrategy(auto_wrap_policy={Block}, cpu_offload=False)

    fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy, plugins=plugins)
    fabric.launch()

    check_valid_checkpoint_dir(checkpoint_dir)

    config = Config.from_json(
        checkpoint_dir / "lit_config.json",
        r=lora_r,
        alpha=lora_alpha,
        dropout=lora_dropout,
        to_query=lora_query,
        to_key=lora_key,
        to_value=lora_value,
        to_projection=lora_projection,
        to_mlp=lora_mlp,
        to_head=lora_head,
    )

    if quantize is not None and devices > 1:
        raise NotImplementedError
    if quantize == "gptq.int4":
        model_file = "lit_model_gptq.4bit.pth"
        if not (checkpoint_dir / model_file).is_file():
            raise ValueError("Please run `python quantize/gptq.py` first")
    else:
        model_file = "lit_model.pth"
    checkpoint_path = checkpoint_dir / model_file

    tokenizer = Tokenizer(checkpoint_dir)
    sample = {"instruction": prompt, "input": input}
    prompt = generate_prompt(sample)
    encoded = tokenizer.encode(prompt, device=fabric.device)
    prompt_length = encoded.size(0)
    max_returned_tokens = prompt_length + max_new_tokens

    fabric.print(f"Loading model {str(checkpoint_path)!r} with {config.__dict__}", file=sys.stderr)
    t0 = time.perf_counter()
    with fabric.init_module(empty_init=True), gptq_quantization(quantize == "gptq.int4"):
        model = GPT(config)
    fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)
    with fabric.init_tensor():
        # set the max_seq_length to limit the memory usage to what we need
        model.max_seq_length = max_returned_tokens
        # enable the kv cache
        model.set_kv_cache(batch_size=1)
    model.eval()

    t0 = time.perf_counter()
    checkpoint = lazy_load(checkpoint_path)
    lora_checkpoint = lazy_load(lora_path)
    checkpoint.update(lora_checkpoint.get("model", lora_checkpoint))
    model.load_state_dict(checkpoint)
    fabric.print(f"Time to load the model weights: {time.perf_counter() - t0:.02f} seconds.", file=sys.stderr)

    merge_lora_weights(model)
    model = fabric.setup(model)

    L.seed_everything(1234)
    t0 = time.perf_counter()
    y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k, eos_id=tokenizer.eos_id)
    t = time.perf_counter() - t0

    output = tokenizer.decode(y)
    output = output.split("### Response:")[1].strip()
    fabric.print(output)

    tokens_generated = y.size(0) - prompt_length
    fabric.print(f"\n\nTime for inference: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr)
    if fabric.device.type == "cuda":
        fabric.print(f"Memory used: {torch.cuda.max_memory_allocated() / 1e9:.02f} GB", file=sys.stderr)


if __name__ == "__main__":
    from jsonargparse import CLI

    torch.set_float32_matmul_precision("high")
    CLI(main)