Spaces:
Runtime error
Runtime error
Raushan-123
commited on
Upload 6 files
Browse files- NETFLIX MOVIES AND TV SHOWS CLUSTERING.csv +0 -0
- Raushan_Sharma_Netflix_movie_Recommender.ipynb +0 -0
- app.py +100 -0
- cosine_sim.pkl +3 -0
- movie_dict.pkl +3 -0
- requirements.txt +0 -0
NETFLIX MOVIES AND TV SHOWS CLUSTERING.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Raushan_Sharma_Netflix_movie_Recommender.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
6 |
+
from imdb import IMDb
|
7 |
+
|
8 |
+
|
9 |
+
similarity = pickle.load(open('cosine_sim.pkl', 'rb'))
|
10 |
+
movie_dict = pickle.load(open('movie_dict.pkl', 'rb'))
|
11 |
+
movies = pd.DataFrame(movie_dict)
|
12 |
+
|
13 |
+
programme_list=movies['title'].to_list()
|
14 |
+
|
15 |
+
imdb = IMDb()
|
16 |
+
def get_movie_id(movie_title):
|
17 |
+
"""Get the IMDb ID of the movie using the IMDbPY library."""
|
18 |
+
try:
|
19 |
+
|
20 |
+
movies = imdb.search_movie(movie_title)
|
21 |
+
movie_id = movies[0].getID() # get the ID of the first search result
|
22 |
+
return movie_id
|
23 |
+
|
24 |
+
except Exception as e:
|
25 |
+
st.error("Error: Failed to retrieve IMDb ID for the selected movie. Please try again with a different movie.")
|
26 |
+
st.stop()
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def get_poster_url(imdb_id):
|
31 |
+
"""Get the URL of the poster image of the movie using the IMDbPY library."""
|
32 |
+
try:
|
33 |
+
|
34 |
+
movie = imdb.get_movie(imdb_id)
|
35 |
+
poster_url = movie['full-size cover url']
|
36 |
+
return poster_url
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
st.error("Error: Failed to retrieve poster URL for the selected movie. Please try again with a different movie.")
|
40 |
+
st.stop()
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def recommend(movie):
|
45 |
+
index = programme_list.index(movie)
|
46 |
+
sim_score = list(enumerate(similarity[index])) #creates a list of tuples containing the similarity score and index between the input title and all other programmes in the dataset.
|
47 |
+
|
48 |
+
#position 0 is the movie itself, thus exclude
|
49 |
+
sim_score = sorted(sim_score, key= lambda x: x[1], reverse=True)[1:6] #sorts the list of tuples by similarity score in descending order.
|
50 |
+
recommend_index = [i[0] for i in sim_score]
|
51 |
+
rec_movie = movies['title'].iloc[recommend_index]
|
52 |
+
rec_movie_ids = [get_movie_id(title) for title in rec_movie]
|
53 |
+
return rec_movie, rec_movie_ids
|
54 |
+
|
55 |
+
st.set_page_config(page_title='Movie Recommender System', page_icon=':clapper:', layout='wide')
|
56 |
+
st.title('Movie Recommender System')
|
57 |
+
|
58 |
+
|
59 |
+
selected_movie_name = st.selectbox('Please select a Movie',
|
60 |
+
sorted(movies['title'].values))
|
61 |
+
|
62 |
+
if st.button('Recommend Me'):
|
63 |
+
try:
|
64 |
+
|
65 |
+
recommendations, rec_movie_ids = recommend(selected_movie_name)
|
66 |
+
# st.write(recommendations, rec_movie_ids)
|
67 |
+
# st.write(recommendations[6195])
|
68 |
+
final_movie_names = []
|
69 |
+
for i, rec_id in zip(recommendations, rec_movie_ids):
|
70 |
+
final_movie_names.append(i)
|
71 |
+
# st.write(i)
|
72 |
+
# poster_url = get_poster_url(rec_id)
|
73 |
+
# st.image(poster_url)
|
74 |
+
|
75 |
+
|
76 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
77 |
+
cols = [col1, col2, col3, col4, col5]
|
78 |
+
with col1:
|
79 |
+
st.text(final_movie_names[0])
|
80 |
+
poster_url = get_poster_url(rec_movie_ids[0])
|
81 |
+
st.image(poster_url)
|
82 |
+
with col2:
|
83 |
+
st.text(final_movie_names[1])
|
84 |
+
poster_url = get_poster_url(rec_movie_ids[1])
|
85 |
+
st.image(poster_url)
|
86 |
+
with col3:
|
87 |
+
st.text(final_movie_names[2])
|
88 |
+
poster_url = get_poster_url(rec_movie_ids[2])
|
89 |
+
st.image(poster_url)
|
90 |
+
with col4:
|
91 |
+
st.text(final_movie_names[3])
|
92 |
+
poster_url = get_poster_url(rec_movie_ids[3])
|
93 |
+
st.image(poster_url)
|
94 |
+
with col5:
|
95 |
+
st.text(final_movie_names[4])
|
96 |
+
poster_url = get_poster_url(rec_movie_ids[4])
|
97 |
+
st.image(poster_url)
|
98 |
+
except Exception as e:
|
99 |
+
st.write('An error occurred while generating recommendations:', e)
|
100 |
+
|
cosine_sim.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c359151c18be50e4826ac795db200cc0fb2d40856b9288382972ace7e4ae1a88
|
3 |
+
size 482983363
|
movie_dict.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5c3458d651ab5c2c4e414deac7d8f5b3b55d1c9abc844991ee27ef872721594
|
3 |
+
size 2366382
|
requirements.txt
ADDED
Binary file (114 Bytes). View file
|
|