Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- Dockerfile +16 -0
- app.py +184 -0
- haarcascade_frontalface_default.xml +0 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Usa una imagen base de Python
|
2 |
+
FROM python:3.12.7
|
3 |
+
# Establece el directorio de trabajo
|
4 |
+
WORKDIR /code
|
5 |
+
|
6 |
+
# Copia los archivos necesarios al contenedor
|
7 |
+
COPY ./requirements.txt /code/requirements.txt
|
8 |
+
RUN pip install --no-cache-dir -r /code/requirements.txt
|
9 |
+
RUN pip install fastapi uvicorn
|
10 |
+
|
11 |
+
COPY . .
|
12 |
+
|
13 |
+
RUN chmod -R 777 /code
|
14 |
+
|
15 |
+
# Comando para ejecutar la aplicaci贸n
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
from fastapi.responses import HTMLResponse
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import List
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
def buscar_existe(image):
|
11 |
+
existe = "no"
|
12 |
+
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
13 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
14 |
+
faces = face_cascade.detectMultiScale(gray, 1.3,5,minSize=(30, 30))
|
15 |
+
for (x,y,w,h) in faces:
|
16 |
+
existe = "si"
|
17 |
+
break
|
18 |
+
return existe
|
19 |
+
|
20 |
+
# Ruta para la p谩gina principal con formulario HTML
|
21 |
+
@app.get('/')
|
22 |
+
async def main():
|
23 |
+
content = """
|
24 |
+
<html>
|
25 |
+
<head>
|
26 |
+
<title>RECONOCIMIENTO FACIAL</title>
|
27 |
+
<style>
|
28 |
+
body {
|
29 |
+
font-family: Arial, sans-serif;
|
30 |
+
display: flex;
|
31 |
+
justify-content: center;
|
32 |
+
align-items: center;
|
33 |
+
height: 100vh;
|
34 |
+
margin: 0;
|
35 |
+
background-image: url('static/Background.png'); /* Reemplaza con la ruta de tu imagen */
|
36 |
+
background-size: cover; /* Ajusta el tama帽o para cubrir todo el cuerpo */
|
37 |
+
background-position: center; /* Centra la imagen en el cuerpo */
|
38 |
+
background-repeat: no-repeat; /* Evita que la imagen se repita */
|
39 |
+
}
|
40 |
+
.container {
|
41 |
+
position: relative;
|
42 |
+
padding: 20px;
|
43 |
+
border-radius: 10px;
|
44 |
+
box-shadow: 0px 0px 10px rgba(247, 15, 15, 0.808);
|
45 |
+
text-align: center;
|
46 |
+
}
|
47 |
+
.overlay{
|
48 |
+
position: absolute;
|
49 |
+
top: 0;
|
50 |
+
left: 0;
|
51 |
+
width: 100%;
|
52 |
+
height: 100%;
|
53 |
+
background-color: rgba(0, 0, 0, 0); /* Capa de opacidad */
|
54 |
+
border-radius: 10px;
|
55 |
+
}
|
56 |
+
.content {
|
57 |
+
position: relative;
|
58 |
+
z-index: 1;
|
59 |
+
}
|
60 |
+
.content h1 {
|
61 |
+
margin-bottom: 20px;
|
62 |
+
}
|
63 |
+
.custom-file-input {
|
64 |
+
display: none;
|
65 |
+
}
|
66 |
+
.file-label {
|
67 |
+
background-color: #007bff;
|
68 |
+
color: white;
|
69 |
+
padding: 10px 20px;
|
70 |
+
border-radius: 5px;
|
71 |
+
cursor: pointer;
|
72 |
+
display: inline-block;
|
73 |
+
margin-top: 20px;
|
74 |
+
margin-bottom: 20px;
|
75 |
+
}
|
76 |
+
.file-label:hover {
|
77 |
+
background-color: #000000;
|
78 |
+
}
|
79 |
+
.custom-button {
|
80 |
+
background-color: #2cb1ff;
|
81 |
+
color: white;
|
82 |
+
border: none;
|
83 |
+
padding: 10px 20px;
|
84 |
+
margin-top: 20px;
|
85 |
+
border-radius: 5px;
|
86 |
+
cursor: pointer;
|
87 |
+
display: inline-block;
|
88 |
+
}
|
89 |
+
.custom-button:hover {
|
90 |
+
background-color: #01050a;
|
91 |
+
}
|
92 |
+
.container img {
|
93 |
+
margin: 20px auto;
|
94 |
+
max-width: 100%;
|
95 |
+
max-height: 300px;
|
96 |
+
border-radius: 10px;
|
97 |
+
display: none;
|
98 |
+
}
|
99 |
+
</style>
|
100 |
+
</head>
|
101 |
+
<body style="background-image: url('static/Background.png'); background-size: cover; background-position: center; background-repeat: no-repeat;">
|
102 |
+
<div class="container">
|
103 |
+
<div class="overlay"></div>
|
104 |
+
<div class="content">
|
105 |
+
<h1>RECONOCIMIENTO FACIAL</h1>
|
106 |
+
<form action="/predict" method="post" enctype="multipart/form-data" onsubmit="mostrarResultado(event)">
|
107 |
+
<label for="file-input" class="file-label">Seleccionar archivo</label>
|
108 |
+
<input id="file-input" class="custom-file-input" name="file" type="file" accept="image/*" onchange="mostrarImagen(event)">
|
109 |
+
<img id="imagenSeleccionada">
|
110 |
+
<button type="submit" class="custom-button">Subir Imagen</button>
|
111 |
+
</form>
|
112 |
+
</div>
|
113 |
+
</div>
|
114 |
+
<script>
|
115 |
+
function mostrarImagen(event) {
|
116 |
+
const archivo = event.target.files[0];
|
117 |
+
if (archivo) {
|
118 |
+
const lector = new FileReader();
|
119 |
+
lector.onload = function(e) {
|
120 |
+
const imagen = document.getElementById('imagenSeleccionada');
|
121 |
+
imagen.src = e.target.result;
|
122 |
+
imagen.style.display = 'block';
|
123 |
+
}
|
124 |
+
lector.readAsDataURL(archivo);
|
125 |
+
}
|
126 |
+
}
|
127 |
+
// Funci贸n para mostrar el resultado como un alert
|
128 |
+
async function mostrarResultado(event) {
|
129 |
+
event.preventDefault(); // Evitar que el formulario se env铆e autom谩ticamente
|
130 |
+
|
131 |
+
try {
|
132 |
+
const formData = new FormData(event.target);
|
133 |
+
const response = await fetch('/predict', {
|
134 |
+
method: 'POST',
|
135 |
+
body: formData
|
136 |
+
});
|
137 |
+
|
138 |
+
if (!response.ok) {
|
139 |
+
throw new Error('HTTP error! Status: ${response.status}');
|
140 |
+
}
|
141 |
+
|
142 |
+
const data = await response.json();
|
143 |
+
alert('Rostro detectado : ${data}');
|
144 |
+
} catch (error) {
|
145 |
+
console.error('Error al procesar la solicitud:', error);
|
146 |
+
alert('Ocurri贸 un error al procesar la solicitud.');
|
147 |
+
}
|
148 |
+
}
|
149 |
+
</script>
|
150 |
+
|
151 |
+
</body>
|
152 |
+
</html>
|
153 |
+
"""
|
154 |
+
return HTMLResponse(content)
|
155 |
+
|
156 |
+
|
157 |
+
# Ruta de predicci贸n
|
158 |
+
@app.post('/predict')
|
159 |
+
async def predict(file: UploadFile = File(...)):
|
160 |
+
try:
|
161 |
+
# Verificar si es una imagen v谩lida
|
162 |
+
if not file.content_type.startswith('image/'):
|
163 |
+
raise HTTPException(status_code=400, detail="El archivo debe ser una imagen.")
|
164 |
+
|
165 |
+
# Convertir la imagen a formato adecuado
|
166 |
+
image = cv2.imdecode(np.frombuffer(await file.read(), np.uint8), cv2.IMREAD_COLOR)
|
167 |
+
|
168 |
+
# Realizar el reconocimiento de emociones en la imagen
|
169 |
+
emotion = buscar_existe(image)
|
170 |
+
print(emotion)
|
171 |
+
# Devolver la emoci贸n detectada como respuesta en formato JSON
|
172 |
+
return emotion#{'emotion': emotion}
|
173 |
+
|
174 |
+
except HTTPException as he:
|
175 |
+
raise he
|
176 |
+
except Exception as e:
|
177 |
+
print(f"Error general: {str(e)}")
|
178 |
+
raise HTTPException(status_code=500, detail="Error durante la predicci贸n de emociones.")
|
179 |
+
|
180 |
+
# Punto de entrada principal para la aplicaci贸n
|
181 |
+
if __name__ == '__main__':
|
182 |
+
# Ejecutar la aplicaci贸n FastAPI utilizando Uvicorn
|
183 |
+
import uvicorn
|
184 |
+
uvicorn.run(app, host='0.0.0.0', port=8000)
|
haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
numpy
|
3 |
+
pydantic
|
4 |
+
opencv-python-headless
|
5 |
+
uvicorn[standard]
|
6 |
+
python-multipart
|