Rami12345 commited on
Commit
5eace13
·
verified ·
1 Parent(s): 354847f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -63
app.py CHANGED
@@ -1,64 +1,35 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # تحميل النموذج المدرب على اللغة العربية
5
+ model_name = "aubmindlab/aragpt2-base" # يمكنك تغيير النموذج إذا لزم الأمر
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+
9
+ # دالة توليد الردود
10
+ def generate_response(user_input):
11
+ prompt = f"مستخدم: {user_input}\nنظام الدعم النفسي:"
12
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
13
+
14
+ # توليد النصوص
15
+ outputs = model.generate(inputs, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
16
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
17
+
18
+ # استخراج الرد فقط
19
+ response = response.split("نظام الدعم النفسي:")[-1].strip()
20
+ return response
21
+
22
+ # إعداد واجهة Gradio
23
+ with gr.Blocks() as app:
24
+ gr.Markdown("# تطبيق الدعم النفسي")
25
+ gr.Markdown("اكتب مشكلتك هنا وسنساعدك بأفضل طريقة ممكنة.")
26
+
27
+ with gr.Row():
28
+ input_text = gr.Textbox(label="اكتب مشكلتك هنا", placeholder="مثال: أشعر بالقلق الشديد...")
29
+ output_text = gr.Textbox(label="الرد")
30
+
31
+ submit_button = gr.Button("أرسل")
32
+ submit_button.click(generate_response, inputs=input_text, outputs=output_text)
33
+
34
+ # تشغيل التطبيق
35
+ app.launch()