Ramendra commited on
Commit
7462b59
·
1 Parent(s): 035ad73

app files added

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.psd filter=lfs diff=lfs merge=lfs -text
37
+ convnet_from_scratch_with_augmentation.keras filter=lfs diff=lfs merge=lfs -text
app.py.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """gradio_deploy.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/13X2E9v7GxryXyT39R5CzxrNwxfA6KMFJ
8
+ """
9
+
10
+ !pip install gradio
11
+
12
+ import gradio as gr
13
+ from PIL import Image
14
+ from timeit import default_timer as timer
15
+ from tensorflow import keras
16
+ import numpy as np
17
+
18
+ MODEL = keras.models.load_model(
19
+ "convnet_from_scratch_with_augmentation.keras")
20
+
21
+ def predict(img):
22
+
23
+ # Start the timer
24
+ start_time = timer()
25
+
26
+ # Reading the image and size transformation
27
+ features = Image.open(img)
28
+ features = features.resize((180, 180))
29
+ features = np.array(features).reshape(1, 180,180,3)
30
+
31
+ # Create a prediction label and prediction probability dictionary for each prediction class
32
+ # This is the required format for Gradio's output parameter
33
+ pred_labels_and_probs = {'dog' if MODEL.predict(features)> 0.5 else 'cat':float(MODEL.predict(features))}
34
+
35
+ # Calculate the prediction time
36
+ pred_time = round(timer() - start_time, 5)
37
+
38
+ # Return the prediction dictionary and prediction time
39
+ return pred_labels_and_probs, pred_time
40
+
41
+ predict('/content/cat.1505.jpg')
42
+
43
+ # Create title, description and article strings
44
+ title = "Classification Demo"
45
+ description = "Cat/Dog classification Tensorflow model with Augmentted small dataset"
46
+
47
+ # Create the Gradio demo
48
+ demo = gr.Interface(fn=predict, # mapping function from input to output
49
+ inputs=gr.Image(type='filepath'), # what are the inputs?
50
+ outputs=[gr.Label(label="Predictions"), # what are the outputs?
51
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
52
+ title=title,
53
+ description=description,)
54
+
55
+ # Launch the demo!
56
+ demo.launch(debug=False, # print errors locally?
57
+ share=True) # generate a publically shareable URL?
58
+
59
+ pip install tensorflow
60
+
61
+ import PIL
62
+
63
+ import tensorflow as tf
64
+
65
+ import timeit
66
+
67
+ print(gr.__version__)
68
+ print(np.__version__)
69
+ print(tf.__version__)
70
+ print(PIL.__version__)
convnet_from_scratch_with_augmentation.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5c2baab54f3fa167009426c924158359eac870339e4c0876376523ec50b9f7a
3
+ size 7982872
examples/cat.1505.jpg ADDED
examples/cat.1515.jpg ADDED
examples/dog.1508.jpg ADDED
examples/dog.1557.jpg ADDED