Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
•
6f9700a
1
Parent(s):
1f955e8
Update model.py
Browse files
model.py
CHANGED
@@ -27,14 +27,9 @@ from annotator.uniformer import apply_uniformer
|
|
27 |
from annotator.util import HWC3, resize_image
|
28 |
|
29 |
CONTROLNET_MODEL_IDS = {
|
30 |
-
|
31 |
-
'hough': 'lllyasviel/sd-controlnet-mlsd',
|
32 |
-
'hed': 'lllyasviel/sd-controlnet-hed',
|
33 |
-
'scribble': 'lllyasviel/sd-controlnet-scribble',
|
34 |
-
'pose': 'lllyasviel/sd-controlnet-openpose',
|
35 |
-
'seg': 'lllyasviel/sd-controlnet-seg',
|
36 |
'depth': 'lllyasviel/sd-controlnet-depth',
|
37 |
-
|
38 |
}
|
39 |
|
40 |
|
@@ -131,405 +126,6 @@ class Model:
|
|
131 |
generator=generator,
|
132 |
image=control_image).images
|
133 |
|
134 |
-
@staticmethod
|
135 |
-
def preprocess_canny(
|
136 |
-
input_image: np.ndarray,
|
137 |
-
image_resolution: int,
|
138 |
-
low_threshold: int,
|
139 |
-
high_threshold: int,
|
140 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
141 |
-
image = resize_image(HWC3(input_image), image_resolution)
|
142 |
-
control_image = apply_canny(image, low_threshold, high_threshold)
|
143 |
-
control_image = HWC3(control_image)
|
144 |
-
vis_control_image = 255 - control_image
|
145 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
146 |
-
vis_control_image)
|
147 |
-
|
148 |
-
@torch.inference_mode()
|
149 |
-
def process_canny(
|
150 |
-
self,
|
151 |
-
input_image: np.ndarray,
|
152 |
-
prompt: str,
|
153 |
-
additional_prompt: str,
|
154 |
-
negative_prompt: str,
|
155 |
-
num_images: int,
|
156 |
-
image_resolution: int,
|
157 |
-
num_steps: int,
|
158 |
-
guidance_scale: float,
|
159 |
-
seed: int,
|
160 |
-
low_threshold: int,
|
161 |
-
high_threshold: int,
|
162 |
-
) -> list[PIL.Image.Image]:
|
163 |
-
control_image, vis_control_image = self.preprocess_canny(
|
164 |
-
input_image=input_image,
|
165 |
-
image_resolution=image_resolution,
|
166 |
-
low_threshold=low_threshold,
|
167 |
-
high_threshold=high_threshold,
|
168 |
-
)
|
169 |
-
self.load_controlnet_weight('canny')
|
170 |
-
results = self.run_pipe(
|
171 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
172 |
-
negative_prompt=negative_prompt,
|
173 |
-
control_image=control_image,
|
174 |
-
num_images=num_images,
|
175 |
-
num_steps=num_steps,
|
176 |
-
guidance_scale=guidance_scale,
|
177 |
-
seed=seed,
|
178 |
-
)
|
179 |
-
return [vis_control_image] + results
|
180 |
-
|
181 |
-
@staticmethod
|
182 |
-
def preprocess_hough(
|
183 |
-
input_image: np.ndarray,
|
184 |
-
image_resolution: int,
|
185 |
-
detect_resolution: int,
|
186 |
-
value_threshold: float,
|
187 |
-
distance_threshold: float,
|
188 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
189 |
-
input_image = HWC3(input_image)
|
190 |
-
control_image = apply_mlsd(
|
191 |
-
resize_image(input_image, detect_resolution), value_threshold,
|
192 |
-
distance_threshold)
|
193 |
-
control_image = HWC3(control_image)
|
194 |
-
image = resize_image(input_image, image_resolution)
|
195 |
-
H, W = image.shape[:2]
|
196 |
-
control_image = cv2.resize(control_image, (W, H),
|
197 |
-
interpolation=cv2.INTER_NEAREST)
|
198 |
-
|
199 |
-
vis_control_image = 255 - cv2.dilate(
|
200 |
-
control_image, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
201 |
-
|
202 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
203 |
-
vis_control_image)
|
204 |
-
|
205 |
-
@torch.inference_mode()
|
206 |
-
def process_hough(
|
207 |
-
self,
|
208 |
-
input_image: np.ndarray,
|
209 |
-
prompt: str,
|
210 |
-
additional_prompt: str,
|
211 |
-
negative_prompt: str,
|
212 |
-
num_images: int,
|
213 |
-
image_resolution: int,
|
214 |
-
detect_resolution: int,
|
215 |
-
num_steps: int,
|
216 |
-
guidance_scale: float,
|
217 |
-
seed: int,
|
218 |
-
value_threshold: float,
|
219 |
-
distance_threshold: float,
|
220 |
-
) -> list[PIL.Image.Image]:
|
221 |
-
control_image, vis_control_image = self.preprocess_hough(
|
222 |
-
input_image=input_image,
|
223 |
-
image_resolution=image_resolution,
|
224 |
-
detect_resolution=detect_resolution,
|
225 |
-
value_threshold=value_threshold,
|
226 |
-
distance_threshold=distance_threshold,
|
227 |
-
)
|
228 |
-
self.load_controlnet_weight('hough')
|
229 |
-
results = self.run_pipe(
|
230 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
231 |
-
negative_prompt=negative_prompt,
|
232 |
-
control_image=control_image,
|
233 |
-
num_images=num_images,
|
234 |
-
num_steps=num_steps,
|
235 |
-
guidance_scale=guidance_scale,
|
236 |
-
seed=seed,
|
237 |
-
)
|
238 |
-
return [vis_control_image] + results
|
239 |
-
|
240 |
-
@staticmethod
|
241 |
-
def preprocess_hed(
|
242 |
-
input_image: np.ndarray,
|
243 |
-
image_resolution: int,
|
244 |
-
detect_resolution: int,
|
245 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
246 |
-
input_image = HWC3(input_image)
|
247 |
-
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
248 |
-
control_image = HWC3(control_image)
|
249 |
-
image = resize_image(input_image, image_resolution)
|
250 |
-
H, W = image.shape[:2]
|
251 |
-
control_image = cv2.resize(control_image, (W, H),
|
252 |
-
interpolation=cv2.INTER_LINEAR)
|
253 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
254 |
-
control_image)
|
255 |
-
|
256 |
-
@torch.inference_mode()
|
257 |
-
def process_hed(
|
258 |
-
self,
|
259 |
-
input_image: np.ndarray,
|
260 |
-
prompt: str,
|
261 |
-
additional_prompt: str,
|
262 |
-
negative_prompt: str,
|
263 |
-
num_images: int,
|
264 |
-
image_resolution: int,
|
265 |
-
detect_resolution: int,
|
266 |
-
num_steps: int,
|
267 |
-
guidance_scale: float,
|
268 |
-
seed: int,
|
269 |
-
) -> list[PIL.Image.Image]:
|
270 |
-
control_image, vis_control_image = self.preprocess_hed(
|
271 |
-
input_image=input_image,
|
272 |
-
image_resolution=image_resolution,
|
273 |
-
detect_resolution=detect_resolution,
|
274 |
-
)
|
275 |
-
self.load_controlnet_weight('hed')
|
276 |
-
results = self.run_pipe(
|
277 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
278 |
-
negative_prompt=negative_prompt,
|
279 |
-
control_image=control_image,
|
280 |
-
num_images=num_images,
|
281 |
-
num_steps=num_steps,
|
282 |
-
guidance_scale=guidance_scale,
|
283 |
-
seed=seed,
|
284 |
-
)
|
285 |
-
return [vis_control_image] + results
|
286 |
-
|
287 |
-
@staticmethod
|
288 |
-
def preprocess_scribble(
|
289 |
-
input_image: np.ndarray,
|
290 |
-
image_resolution: int,
|
291 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
292 |
-
image = resize_image(HWC3(input_image), image_resolution)
|
293 |
-
control_image = np.zeros_like(image, dtype=np.uint8)
|
294 |
-
control_image[np.min(image, axis=2) < 127] = 255
|
295 |
-
vis_control_image = 255 - control_image
|
296 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
297 |
-
vis_control_image)
|
298 |
-
|
299 |
-
@torch.inference_mode()
|
300 |
-
def process_scribble(
|
301 |
-
self,
|
302 |
-
input_image: np.ndarray,
|
303 |
-
prompt: str,
|
304 |
-
additional_prompt: str,
|
305 |
-
negative_prompt: str,
|
306 |
-
num_images: int,
|
307 |
-
image_resolution: int,
|
308 |
-
num_steps: int,
|
309 |
-
guidance_scale: float,
|
310 |
-
seed: int,
|
311 |
-
) -> list[PIL.Image.Image]:
|
312 |
-
control_image, vis_control_image = self.preprocess_scribble(
|
313 |
-
input_image=input_image,
|
314 |
-
image_resolution=image_resolution,
|
315 |
-
)
|
316 |
-
self.load_controlnet_weight('scribble')
|
317 |
-
results = self.run_pipe(
|
318 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
319 |
-
negative_prompt=negative_prompt,
|
320 |
-
control_image=control_image,
|
321 |
-
num_images=num_images,
|
322 |
-
num_steps=num_steps,
|
323 |
-
guidance_scale=guidance_scale,
|
324 |
-
seed=seed,
|
325 |
-
)
|
326 |
-
return [vis_control_image] + results
|
327 |
-
|
328 |
-
@staticmethod
|
329 |
-
def preprocess_scribble_interactive(
|
330 |
-
input_image: np.ndarray,
|
331 |
-
image_resolution: int,
|
332 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
333 |
-
image = resize_image(HWC3(input_image['mask'][:, :, 0]),
|
334 |
-
image_resolution)
|
335 |
-
control_image = np.zeros_like(image, dtype=np.uint8)
|
336 |
-
control_image[np.min(image, axis=2) > 127] = 255
|
337 |
-
vis_control_image = 255 - control_image
|
338 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
339 |
-
vis_control_image)
|
340 |
-
|
341 |
-
@torch.inference_mode()
|
342 |
-
def process_scribble_interactive(
|
343 |
-
self,
|
344 |
-
input_image: np.ndarray,
|
345 |
-
prompt: str,
|
346 |
-
additional_prompt: str,
|
347 |
-
negative_prompt: str,
|
348 |
-
num_images: int,
|
349 |
-
image_resolution: int,
|
350 |
-
num_steps: int,
|
351 |
-
guidance_scale: float,
|
352 |
-
seed: int,
|
353 |
-
) -> list[PIL.Image.Image]:
|
354 |
-
control_image, vis_control_image = self.preprocess_scribble_interactive(
|
355 |
-
input_image=input_image,
|
356 |
-
image_resolution=image_resolution,
|
357 |
-
)
|
358 |
-
self.load_controlnet_weight('scribble')
|
359 |
-
results = self.run_pipe(
|
360 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
361 |
-
negative_prompt=negative_prompt,
|
362 |
-
control_image=control_image,
|
363 |
-
num_images=num_images,
|
364 |
-
num_steps=num_steps,
|
365 |
-
guidance_scale=guidance_scale,
|
366 |
-
seed=seed,
|
367 |
-
)
|
368 |
-
return [vis_control_image] + results
|
369 |
-
|
370 |
-
@staticmethod
|
371 |
-
def preprocess_fake_scribble(
|
372 |
-
input_image: np.ndarray,
|
373 |
-
image_resolution: int,
|
374 |
-
detect_resolution: int,
|
375 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
376 |
-
input_image = HWC3(input_image)
|
377 |
-
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
378 |
-
control_image = HWC3(control_image)
|
379 |
-
image = resize_image(input_image, image_resolution)
|
380 |
-
H, W = image.shape[:2]
|
381 |
-
|
382 |
-
control_image = cv2.resize(control_image, (W, H),
|
383 |
-
interpolation=cv2.INTER_LINEAR)
|
384 |
-
control_image = nms(control_image, 127, 3.0)
|
385 |
-
control_image = cv2.GaussianBlur(control_image, (0, 0), 3.0)
|
386 |
-
control_image[control_image > 4] = 255
|
387 |
-
control_image[control_image < 255] = 0
|
388 |
-
|
389 |
-
vis_control_image = 255 - control_image
|
390 |
-
|
391 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
392 |
-
vis_control_image)
|
393 |
-
|
394 |
-
@torch.inference_mode()
|
395 |
-
def process_fake_scribble(
|
396 |
-
self,
|
397 |
-
input_image: np.ndarray,
|
398 |
-
prompt: str,
|
399 |
-
additional_prompt: str,
|
400 |
-
negative_prompt: str,
|
401 |
-
num_images: int,
|
402 |
-
image_resolution: int,
|
403 |
-
detect_resolution: int,
|
404 |
-
num_steps: int,
|
405 |
-
guidance_scale: float,
|
406 |
-
seed: int,
|
407 |
-
) -> list[PIL.Image.Image]:
|
408 |
-
control_image, vis_control_image = self.preprocess_fake_scribble(
|
409 |
-
input_image=input_image,
|
410 |
-
image_resolution=image_resolution,
|
411 |
-
detect_resolution=detect_resolution,
|
412 |
-
)
|
413 |
-
self.load_controlnet_weight('scribble')
|
414 |
-
results = self.run_pipe(
|
415 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
416 |
-
negative_prompt=negative_prompt,
|
417 |
-
control_image=control_image,
|
418 |
-
num_images=num_images,
|
419 |
-
num_steps=num_steps,
|
420 |
-
guidance_scale=guidance_scale,
|
421 |
-
seed=seed,
|
422 |
-
)
|
423 |
-
return [vis_control_image] + results
|
424 |
-
|
425 |
-
@staticmethod
|
426 |
-
def preprocess_pose(
|
427 |
-
input_image: np.ndarray,
|
428 |
-
image_resolution: int,
|
429 |
-
detect_resolution: int,
|
430 |
-
is_pose_image: bool,
|
431 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
432 |
-
input_image = HWC3(input_image)
|
433 |
-
if not is_pose_image:
|
434 |
-
control_image, _ = apply_openpose(
|
435 |
-
resize_image(input_image, detect_resolution))
|
436 |
-
control_image = HWC3(control_image)
|
437 |
-
image = resize_image(input_image, image_resolution)
|
438 |
-
H, W = image.shape[:2]
|
439 |
-
control_image = cv2.resize(control_image, (W, H),
|
440 |
-
interpolation=cv2.INTER_NEAREST)
|
441 |
-
else:
|
442 |
-
control_image = resize_image(input_image, image_resolution)
|
443 |
-
|
444 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
445 |
-
control_image)
|
446 |
-
|
447 |
-
@torch.inference_mode()
|
448 |
-
def process_pose(
|
449 |
-
self,
|
450 |
-
input_image: np.ndarray,
|
451 |
-
prompt: str,
|
452 |
-
additional_prompt: str,
|
453 |
-
negative_prompt: str,
|
454 |
-
num_images: int,
|
455 |
-
image_resolution: int,
|
456 |
-
detect_resolution: int,
|
457 |
-
num_steps: int,
|
458 |
-
guidance_scale: float,
|
459 |
-
seed: int,
|
460 |
-
is_pose_image: bool,
|
461 |
-
) -> list[PIL.Image.Image]:
|
462 |
-
control_image, vis_control_image = self.preprocess_pose(
|
463 |
-
input_image=input_image,
|
464 |
-
image_resolution=image_resolution,
|
465 |
-
detect_resolution=detect_resolution,
|
466 |
-
is_pose_image=is_pose_image,
|
467 |
-
)
|
468 |
-
self.load_controlnet_weight('pose')
|
469 |
-
results = self.run_pipe(
|
470 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
471 |
-
negative_prompt=negative_prompt,
|
472 |
-
control_image=control_image,
|
473 |
-
num_images=num_images,
|
474 |
-
num_steps=num_steps,
|
475 |
-
guidance_scale=guidance_scale,
|
476 |
-
seed=seed,
|
477 |
-
)
|
478 |
-
return [vis_control_image] + results
|
479 |
-
|
480 |
-
@staticmethod
|
481 |
-
def preprocess_seg(
|
482 |
-
input_image: np.ndarray,
|
483 |
-
image_resolution: int,
|
484 |
-
detect_resolution: int,
|
485 |
-
is_segmentation_map: bool,
|
486 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
487 |
-
input_image = HWC3(input_image)
|
488 |
-
if not is_segmentation_map:
|
489 |
-
control_image = apply_uniformer(
|
490 |
-
resize_image(input_image, detect_resolution))
|
491 |
-
image = resize_image(input_image, image_resolution)
|
492 |
-
H, W = image.shape[:2]
|
493 |
-
control_image = cv2.resize(control_image, (W, H),
|
494 |
-
interpolation=cv2.INTER_NEAREST)
|
495 |
-
else:
|
496 |
-
control_image = resize_image(input_image, image_resolution)
|
497 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
498 |
-
control_image)
|
499 |
-
|
500 |
-
@torch.inference_mode()
|
501 |
-
def process_seg(
|
502 |
-
self,
|
503 |
-
input_image: np.ndarray,
|
504 |
-
prompt: str,
|
505 |
-
additional_prompt: str,
|
506 |
-
negative_prompt: str,
|
507 |
-
num_images: int,
|
508 |
-
image_resolution: int,
|
509 |
-
detect_resolution: int,
|
510 |
-
num_steps: int,
|
511 |
-
guidance_scale: float,
|
512 |
-
seed: int,
|
513 |
-
is_segmentation_map: bool,
|
514 |
-
) -> list[PIL.Image.Image]:
|
515 |
-
control_image, vis_control_image = self.preprocess_seg(
|
516 |
-
input_image=input_image,
|
517 |
-
image_resolution=image_resolution,
|
518 |
-
detect_resolution=detect_resolution,
|
519 |
-
is_segmentation_map=is_segmentation_map,
|
520 |
-
)
|
521 |
-
self.load_controlnet_weight('seg')
|
522 |
-
results = self.run_pipe(
|
523 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
524 |
-
negative_prompt=negative_prompt,
|
525 |
-
control_image=control_image,
|
526 |
-
num_images=num_images,
|
527 |
-
num_steps=num_steps,
|
528 |
-
guidance_scale=guidance_scale,
|
529 |
-
seed=seed,
|
530 |
-
)
|
531 |
-
return [vis_control_image] + results
|
532 |
-
|
533 |
@staticmethod
|
534 |
def preprocess_depth(
|
535 |
input_image: np.ndarray,
|
@@ -583,61 +179,3 @@ class Model:
|
|
583 |
seed=seed,
|
584 |
)
|
585 |
return [vis_control_image] + results
|
586 |
-
|
587 |
-
@staticmethod
|
588 |
-
def preprocess_normal(
|
589 |
-
input_image: np.ndarray,
|
590 |
-
image_resolution: int,
|
591 |
-
detect_resolution: int,
|
592 |
-
bg_threshold: float,
|
593 |
-
is_normal_image: bool,
|
594 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
595 |
-
input_image = HWC3(input_image)
|
596 |
-
if not is_normal_image:
|
597 |
-
_, control_image = apply_midas(resize_image(
|
598 |
-
input_image, detect_resolution),
|
599 |
-
bg_th=bg_threshold)
|
600 |
-
control_image = HWC3(control_image)
|
601 |
-
image = resize_image(input_image, image_resolution)
|
602 |
-
H, W = image.shape[:2]
|
603 |
-
control_image = cv2.resize(control_image, (W, H),
|
604 |
-
interpolation=cv2.INTER_LINEAR)
|
605 |
-
else:
|
606 |
-
control_image = resize_image(input_image, image_resolution)
|
607 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
608 |
-
control_image)
|
609 |
-
|
610 |
-
@torch.inference_mode()
|
611 |
-
def process_normal(
|
612 |
-
self,
|
613 |
-
input_image: np.ndarray,
|
614 |
-
prompt: str,
|
615 |
-
additional_prompt: str,
|
616 |
-
negative_prompt: str,
|
617 |
-
num_images: int,
|
618 |
-
image_resolution: int,
|
619 |
-
detect_resolution: int,
|
620 |
-
num_steps: int,
|
621 |
-
guidance_scale: float,
|
622 |
-
seed: int,
|
623 |
-
bg_threshold: float,
|
624 |
-
is_normal_image: bool,
|
625 |
-
) -> list[PIL.Image.Image]:
|
626 |
-
control_image, vis_control_image = self.preprocess_normal(
|
627 |
-
input_image=input_image,
|
628 |
-
image_resolution=image_resolution,
|
629 |
-
detect_resolution=detect_resolution,
|
630 |
-
bg_threshold=bg_threshold,
|
631 |
-
is_normal_image=is_normal_image,
|
632 |
-
)
|
633 |
-
self.load_controlnet_weight('normal')
|
634 |
-
results = self.run_pipe(
|
635 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
636 |
-
negative_prompt=negative_prompt,
|
637 |
-
control_image=control_image,
|
638 |
-
num_images=num_images,
|
639 |
-
num_steps=num_steps,
|
640 |
-
guidance_scale=guidance_scale,
|
641 |
-
seed=seed,
|
642 |
-
)
|
643 |
-
return [vis_control_image] + results
|
|
|
27 |
from annotator.util import HWC3, resize_image
|
28 |
|
29 |
CONTROLNET_MODEL_IDS = {
|
30 |
+
|
|
|
|
|
|
|
|
|
|
|
31 |
'depth': 'lllyasviel/sd-controlnet-depth',
|
32 |
+
|
33 |
}
|
34 |
|
35 |
|
|
|
126 |
generator=generator,
|
127 |
image=control_image).images
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
@staticmethod
|
130 |
def preprocess_depth(
|
131 |
input_image: np.ndarray,
|
|
|
179 |
seed=seed,
|
180 |
)
|
181 |
return [vis_control_image] + results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|