3304Chatbot / app.py
Rajan's picture
Create app.py
c03de54 verified
import gradio as gr
import numpy as np
import json
import re
import random
from typing import List, Dict, Tuple, Optional
import os
import time
import matplotlib.pyplot as plt
from io import BytesIO
import base64
from datetime import datetime
# Assuming all the classes (ActivationFunctions, LossFunctions, Layer, DenseLayer,
# DropoutLayer, NeuralNetwork, TextProcessor, Chatbot) are defined as in your uploaded code
# I'm not repeating them here for brevity
class ActivationFunctions:
"""Class containing various activation functions and their derivatives."""
@staticmethod
def sigmoid(z: np.ndarray) -> np.ndarray:
"""Sigmoid activation function."""
z = np.clip(z, -500, 500)
return 1 / (1 + np.exp(-z))
@staticmethod
def sigmoid_derivative(z: np.ndarray) -> np.ndarray:
"""Derivative of the sigmoid function."""
s = ActivationFunctions.sigmoid(z)
return s * (1 - s)
@staticmethod
def relu(z: np.ndarray) -> np.ndarray:
"""ReLU activation function."""
return np.maximum(0, z)
@staticmethod
def relu_derivative(z: np.ndarray) -> np.ndarray:
"""Derivative of the ReLU function."""
return np.where(z > 0, 1, 0)
@staticmethod
def softmax(z: np.ndarray) -> np.ndarray:
"""Softmax activation function."""
exp_z = np.exp(z - np.max(z))
return exp_z / exp_z.sum(axis=0, keepdims=True)
class LossFunctions:
"""Class containing various loss functions and their derivatives."""
@staticmethod
def mse(output: np.ndarray, target: np.ndarray) -> float:
"""Mean Squared Error loss."""
return np.mean((output - target) ** 2)
@staticmethod
def mse_derivative(output: np.ndarray, target: np.ndarray) -> np.ndarray:
"""Derivative of MSE loss."""
return 2 * (output - target) / output.size
@staticmethod
def cross_entropy(output: np.ndarray, target: np.ndarray) -> float:
"""Cross Entropy loss for multi-class classification."""
epsilon = 1e-15
output = np.clip(output, epsilon, 1 - epsilon)
return -np.sum(target * np.log(output)) / output.shape[1]
@staticmethod
def cross_entropy_derivative(output: np.ndarray, target: np.ndarray) -> np.ndarray:
"""Derivative of Cross Entropy loss."""
epsilon = 1e-15
output = np.clip(output, epsilon, 1 - epsilon)
return -target / output / output.shape[1]
class Layer:
"""Base class for neural network layers."""
def forward(self, inputs: np.ndarray) -> np.ndarray:
"""Forward pass through the layer."""
raise NotImplementedError
def backward(self, grad: np.ndarray) -> np.ndarray:
"""Backward pass through the layer."""
raise NotImplementedError
def update(self, learning_rate: float) -> None:
"""Update layer parameters."""
pass
def get_parameters(self) -> List:
"""Get layer parameters."""
return []
class DenseLayer(Layer):
"""Fully connected layer with improved numerical stability."""
def __init__(self, input_size: int, output_size: int, activation: str = "sigmoid"):
"""Initialize the dense layer with more stable parameters."""
self.input_size = input_size
self.output_size = output_size
# Use smaller initialization to prevent exploding gradients
# Xavier/Glorot initialization with smaller scale factor
self.weights = np.random.randn(output_size, input_size) * np.sqrt(
1 / (input_size + output_size)
)
self.biases = np.zeros((output_size, 1))
# Set activation function
if activation == "sigmoid":
self.activation_fn = ActivationFunctions.sigmoid
self.activation_derivative = ActivationFunctions.sigmoid_derivative
elif activation == "relu":
self.activation_fn = ActivationFunctions.relu
self.activation_derivative = ActivationFunctions.relu_derivative
elif activation == "softmax":
self.activation_fn = ActivationFunctions.softmax
self.activation_derivative = None
else:
raise ValueError(f"Unsupported activation function: {activation}")
self.activation_name = activation
# Cache for backward pass
self.inputs = None
self.z = None
self.output = None
# Gradients
self.dW = None
self.db = None
def forward(self, inputs: np.ndarray) -> np.ndarray:
"""Forward pass through the layer with improved numerical stability."""
self.inputs = inputs
# Use dot product with better numerical stability
self.z = np.dot(self.weights, inputs) + self.biases
# Clip values to prevent overflow in activations
if self.activation_name == "sigmoid":
self.z = np.clip(self.z, -15, 15) # Prevent overflow in sigmoid
self.output = self.activation_fn(self.z)
# Add small epsilon to prevent exact zeros or ones
if self.activation_name == "softmax":
epsilon = 1e-10
self.output = np.clip(self.output, epsilon, 1.0 - epsilon)
return self.output
def backward(self, grad: np.ndarray) -> np.ndarray:
"""Backward pass through the layer with gradient clipping."""
if self.activation_name == "softmax":
# Special case for softmax + cross-entropy
delta = grad
else:
delta = grad * self.activation_derivative(self.z)
# Compute gradients
self.dW = np.dot(delta, self.inputs.T)
self.db = np.sum(delta, axis=1, keepdims=True)
# Clip gradients to prevent exploding gradients
max_grad_norm = 5.0
self.dW = np.clip(self.dW, -max_grad_norm, max_grad_norm)
self.db = np.clip(self.db, -max_grad_norm, max_grad_norm)
# Gradient to pass to the previous layer
return np.dot(self.weights.T, delta)
def update(self, learning_rate: float) -> None:
"""Update layer parameters using gradient descent with weight decay."""
# Add small weight decay to prevent overfitting
weight_decay = 1e-4
weight_decay_term = weight_decay * self.weights
self.weights -= learning_rate * (self.dW + weight_decay_term)
self.biases -= learning_rate * self.db
class DropoutLayer(Layer):
"""Dropout layer for regularization."""
def __init__(self, dropout_rate: float = 0.5):
"""Initialize the dropout layer."""
self.dropout_rate = dropout_rate
self.mask = None
def forward(self, inputs: np.ndarray, training: bool = True) -> np.ndarray:
"""Forward pass through the layer."""
if not training:
return inputs
# Create dropout mask
self.mask = np.random.binomial(1, 1 - self.dropout_rate, size=inputs.shape) / (
1 - self.dropout_rate
)
return inputs * self.mask
def backward(self, grad: np.ndarray) -> np.ndarray:
"""Backward pass through the layer."""
return grad * self.mask
class NeuralNetwork:
"""Neural network with multiple layers."""
def __init__(self):
"""Initialize the neural network."""
self.layers = []
self.loss_fn = None
self.loss_derivative = None
def add(self, layer: Layer) -> None:
"""Add a layer to the network."""
self.layers.append(layer)
def set_loss(self, loss_type: str) -> None:
"""Set the loss function."""
if loss_type == "mse":
self.loss_fn = LossFunctions.mse
self.loss_derivative = LossFunctions.mse_derivative
elif loss_type == "cross_entropy":
self.loss_fn = LossFunctions.cross_entropy
self.loss_derivative = LossFunctions.cross_entropy_derivative
else:
raise ValueError(f"Unsupported loss function: {loss_type}")
def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray:
"""Forward pass through the network."""
output = x
for layer in self.layers:
if isinstance(layer, DropoutLayer):
output = layer.forward(output, training)
else:
output = layer.forward(output)
return output
def compute_loss(self, y_pred: np.ndarray, y_true: np.ndarray) -> float:
"""Compute the loss."""
return self.loss_fn(y_pred, y_true)
def backward(self, y_pred: np.ndarray, y_true: np.ndarray) -> None:
"""Backward pass through the network."""
# Initial gradient from the loss function
grad = self.loss_derivative(y_pred, y_true)
# Propagate gradient through layers in reverse order
for layer in reversed(self.layers):
grad = layer.backward(grad)
def update(self, learning_rate: float) -> None:
"""Update network parameters."""
for layer in self.layers:
layer.update(learning_rate)
def predict(self, x: np.ndarray) -> np.ndarray:
"""Make predictions."""
return self.forward(x, training=False)
@classmethod
def load(cls, filename: str) -> "NeuralNetwork":
"""Load a model from a file."""
with open(filename, "r") as f:
model_data = json.load(f)
network = cls()
network.set_loss(model_data.get("loss_type", "cross_entropy"))
for layer_data in model_data["layers"]:
if layer_data["type"] == "dense":
layer = DenseLayer(
layer_data["input_size"],
layer_data["output_size"],
layer_data["activation"],
)
layer.weights = np.array(layer_data["weights"])
layer.biases = np.array(layer_data["biases"])
network.add(layer)
elif layer_data["type"] == "dropout":
layer = DropoutLayer(layer_data["dropout_rate"])
network.add(layer)
return network
def save(self, filename: str) -> None:
"""Save the model to a file."""
model_data = {"layers": []}
for layer in self.layers:
if isinstance(layer, DenseLayer):
layer_data = {
"type": "dense",
"input_size": layer.input_size,
"output_size": layer.output_size,
"activation": layer.activation_name,
"weights": layer.weights.tolist(),
"biases": layer.biases.tolist(),
}
model_data["layers"].append(layer_data)
elif isinstance(layer, DropoutLayer):
layer_data = {"type": "dropout", "dropout_rate": layer.dropout_rate}
model_data["layers"].append(layer_data)
with open(filename, "w") as f:
json.dump(model_data, f)
class TextProcessor:
"""Class for processing text data."""
def __init__(self):
"""Initialize the text processor."""
self.vocabulary = []
self.vocabulary_size = 0
def tokenize(self, sentence: str) -> List[str]:
"""Tokenize a sentence."""
return re.findall(r"\w+", sentence.lower())
def build_vocabulary(self, sentences: List[str]) -> None:
"""Build the vocabulary from a list of sentences."""
vocabulary = set()
for sentence in sentences:
tokens = self.tokenize(sentence)
vocabulary.update(tokens)
self.vocabulary = sorted(list(vocabulary))
self.vocabulary_size = len(self.vocabulary)
def sentence_to_bow(self, sentence: str) -> np.ndarray:
"""Convert a sentence to a bag-of-words vector."""
tokens = self.tokenize(sentence)
vector = np.zeros((self.vocabulary_size, 1))
for token in tokens:
if token in self.vocabulary:
idx = self.vocabulary.index(token)
vector[idx, 0] = 1
return vector
def save(self, filename: str) -> None:
"""Save the text processor to a file."""
processor_data = {
"vocabulary": self.vocabulary,
"vocabulary_size": self.vocabulary_size,
}
with open(filename, "w") as f:
json.dump(processor_data, f)
@classmethod
def load(cls, filename: str) -> "TextProcessor":
"""Load a text processor from a file."""
with open(filename, "r") as f:
processor_data = json.load(f)
processor = cls()
processor.vocabulary = processor_data["vocabulary"]
processor.vocabulary_size = processor_data["vocabulary_size"]
return processor
class Chatbot:
"""Neural network based chatbot."""
def __init__(self):
"""Initialize the chatbot."""
self.intents = {}
self.text_processor = TextProcessor()
self.model = NeuralNetwork()
self.intent_names = []
self.confidence_threshold = 0.5
self.default_response = "I'm not sure I understand. Could you rephrase that?"
self.training_history = None
def load_intents(self, intents_data: Dict) -> None:
"""Load intents data."""
self.intents = intents_data
self.intent_names = list(self.intents.keys())
# Extract all patterns for building vocabulary
all_patterns = []
for intent in self.intents.values():
all_patterns.extend(intent["patterns"])
# Build vocabulary from patterns
self.text_processor.build_vocabulary(all_patterns)
def load_intents_from_file(self, filename: str) -> None:
"""Load intents from a JSON file."""
with open(filename, "r") as f:
intents_data = json.load(f)
self.load_intents(intents_data)
def save_intents(self, filename: str) -> None:
"""Save intents to a JSON file."""
with open(filename, "w") as f:
json.dump(self.intents, f, indent=4)
def load_model(self, filename: str) -> None:
"""Load a model from a file."""
self.model = NeuralNetwork.load(filename)
def save_model(self, filename: str) -> None:
"""Save the model to a file."""
self.model.save(filename)
# Also save the text processor and intent names
self.text_processor.save(filename.replace(".json", "_processor.json"))
# Save intent names
with open(filename.replace(".json", "_intents.json"), "w") as f:
json.dump(
{
"intent_names": self.intent_names,
"confidence_threshold": self.confidence_threshold,
"default_response": self.default_response,
},
f,
)
def build_model(
self, hidden_layers: List[int] = [8], dropout_rate: float = 0.0
) -> None:
"""Build the neural network model."""
# Input layer size is the vocabulary size
input_size = self.text_processor.vocabulary_size
# Output layer size is the number of intents
output_size = len(self.intent_names)
if output_size == 0:
raise ValueError("No intents loaded. Please load intents first.")
# Create the model
self.model = NeuralNetwork()
# Add first hidden layer
self.model.add(DenseLayer(input_size, hidden_layers[0], "relu"))
# Add dropout if needed
if dropout_rate > 0:
self.model.add(DropoutLayer(dropout_rate))
# Add additional hidden layers
for i in range(1, len(hidden_layers)):
self.model.add(DenseLayer(hidden_layers[i - 1], hidden_layers[i], "relu"))
# Add dropout if needed
if dropout_rate > 0:
self.model.add(DropoutLayer(dropout_rate))
# Add output layer with softmax activation for classification
self.model.add(DenseLayer(hidden_layers[-1], output_size, "softmax"))
# Set cross-entropy loss for classification
self.model.set_loss("cross_entropy")
def train(
self,
epochs: int = 1000,
learning_rate: float = 0.01,
batch_size: int = None,
verbose: bool = True,
) -> Dict:
"""Train the model with numerical stability fixes."""
# Prepare training data
X_train = []
y_train = []
for idx, intent in enumerate(self.intent_names):
for pattern in self.intents[intent]["patterns"]:
# Convert pattern to bag-of-words
X_train.append(self.text_processor.sentence_to_bow(pattern))
# Create one-hot encoded target
target = np.zeros((len(self.intent_names), 1))
target[idx, 0] = 1
y_train.append(target)
# Convert to numpy arrays
X_train = np.hstack(X_train)
y_train = np.hstack(y_train)
# Training history
history = {"loss": [], "accuracy": []}
# Apply gradient clipping to prevent exploding gradients
max_grad_norm = 1.0
# Training loop
for epoch in range(epochs):
# Forward pass
outputs = self.model.forward(X_train)
# Add small epsilon to prevent log(0)
epsilon = 1e-10
outputs = np.clip(outputs, epsilon, 1.0 - epsilon)
# Compute loss
loss = self.model.compute_loss(outputs, y_train)
# Check for NaN and if found, break training
if np.isnan(loss):
if verbose:
print(f"NaN loss detected at epoch {epoch+1}. Stopping training.")
# If we have previous good values, use those
if epoch > 0:
break
else:
# Otherwise, return with error
return {"loss": [0], "accuracy": [0]}
# Backward pass
self.model.backward(outputs, y_train)
# Apply gradient clipping to each layer
for layer in self.model.layers:
if hasattr(layer, "dW") and layer.dW is not None:
# Clip gradients
layer.dW = np.clip(layer.dW, -max_grad_norm, max_grad_norm)
if hasattr(layer, "db") and layer.db is not None:
layer.db = np.clip(layer.db, -max_grad_norm, max_grad_norm)
# Update parameters
self.model.update(learning_rate)
# Compute accuracy
predictions = np.argmax(outputs, axis=0)
targets = np.argmax(y_train, axis=0)
accuracy = np.mean(predictions == targets)
# Save history
history["loss"].append(
float(loss)
) # Convert to Python float to ensure it's serializable
history["accuracy"].append(float(accuracy))
# Print progress
if verbose and (epoch + 1) % 100 == 0:
print(
f"Epoch {epoch + 1}/{epochs}, Loss: {loss:.4f}, Accuracy: {accuracy:.4f}"
)
self.training_history = history
return history
def predict(self, sentence: str) -> Tuple[str, float]:
"""Predict the intent of a sentence."""
# Convert to bag-of-words
bow = self.text_processor.sentence_to_bow(sentence)
# Get prediction
prediction = self.model.predict(bow)
# Get predicted intent and confidence
intent_idx = np.argmax(prediction)
confidence = prediction[intent_idx, 0]
return self.intent_names[intent_idx], confidence
def get_response(self, sentence: str) -> Tuple[str, str, float]:
"""Get a response for a user input."""
intent, confidence = self.predict(sentence)
# Use default response if confidence is below threshold
if confidence < self.confidence_threshold:
return "unknown", self.default_response, confidence
# Get a random response for the predicted intent
responses = self.intents[intent]["responses"]
response = random.choice(responses)
return intent, response, confidence
def plot_training_history(self, history: Dict = None) -> None:
"""Plot the training history."""
if history is None:
history = self.training_history
if history is None:
print("No training history available.")
return
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(history["loss"])
plt.title("Model Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.subplot(1, 2, 2)
plt.plot(history["accuracy"])
plt.title("Model Accuracy")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.tight_layout()
plt.show()
def get_training_plot_as_base64(self, history: Dict = None) -> str:
"""Generate a base64 encoded image of the training history plot with improved error handling."""
if history is None:
history = self.training_history
if history is None or "loss" not in history or len(history["loss"]) == 0:
return None
try:
plt.figure(figsize=(12, 5))
# Check for NaN values and filter them out
loss_values = [x for x in history["loss"] if not np.isnan(x)]
acc_values = [x for x in history["accuracy"] if not np.isnan(x)]
if len(loss_values) == 0 or len(acc_values) == 0:
return None
# Plot loss (with error handling)
plt.subplot(1, 2, 1)
plt.plot(loss_values)
plt.title("Model Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
# Plot accuracy (with error handling)
plt.subplot(1, 2, 2)
plt.plot(acc_values)
plt.title("Model Accuracy")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.tight_layout()
# Save plot to a BytesIO object
buf = BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
# Encode to base64
img_str = base64.b64encode(buf.read()).decode("utf-8")
plt.close()
# Save the image to a file instead of returning the base64 string directly
# This avoids the file name too long error
img_path = "training_plot.png"
with open(img_path, "wb") as f:
f.write(base64.b64decode(img_str))
return img_path
except Exception as e:
print(f"Error generating training plot: {str(e)}")
return None
def chat(self):
"""Start a chat session in the console."""
print("Chatbot: Hello! Type 'quit' to exit.")
while True:
user_input = input("You: ")
if user_input.lower() in ["quit", "exit", "bye"]:
print("Chatbot: Goodbye!")
break
intent, response, confidence = self.get_response(user_input)
print(f"Chatbot ({intent}, {confidence:.2f}): {response}")
# Initialize the chatbot
chatbot = Chatbot()
# Default intents
default_intents = {
"greeting": {
"patterns": ["Hi", "Hello", "Hey", "Good morning", "What's up"],
"responses": ["Hello!", "Hi there!", "Greetings!", "Hey! How can I help you?"],
},
"farewell": {
"patterns": ["Bye", "See you", "Goodbye", "Later", "I'm leaving"],
"responses": ["Goodbye!", "See you later!", "Farewell!", "Take care!"],
},
"thanks": {
"patterns": ["Thanks", "Thank you", "Much appreciated", "Appreciate it"],
"responses": ["You're welcome!", "No problem!", "Anytime!", "Glad to help!"],
},
"help": {
"patterns": ["Help", "I need help", "Can you help me", "Support"],
"responses": [
"How can I help you?",
"I'm here to assist you.",
"What do you need help with?",
],
},
}
# Function to initialize the chatbot
def initialize_chatbot():
global chatbot
# Check if model exists
model_path = "chatbot_model.json"
processor_path = "chatbot_model_processor.json"
intents_names_path = "chatbot_model_intents.json"
intents_path = "intents.json"
# Check if intents file exists
if os.path.exists(intents_path):
try:
chatbot.load_intents_from_file(intents_path)
print(f"Loaded intents from {intents_path}")
except Exception as e:
print(f"Error loading intents: {e}")
print("Loading default intents")
chatbot.load_intents(default_intents)
else:
print("No intents file found. Loading default intents")
chatbot.load_intents(default_intents)
# Save default intents
chatbot.save_intents(intents_path)
# Check if all model files exist
if (
os.path.exists(model_path)
and os.path.exists(processor_path)
and os.path.exists(intents_names_path)
):
try:
# Load the model
chatbot.load_model(model_path)
# Load the text processor
chatbot.text_processor = TextProcessor.load(processor_path)
# Load intent names and settings
with open(intents_names_path, "r") as f:
intents_data = json.load(f)
chatbot.intent_names = intents_data["intent_names"]
chatbot.confidence_threshold = intents_data.get(
"confidence_threshold", 0.5
)
chatbot.default_response = intents_data.get(
"default_response",
"I'm not sure I understand. Could you rephrase that?",
)
print(f"Loaded existing model from {model_path}")
except Exception as e:
print(f"Error loading model: {e}")
print("A new model will be built and trained")
chatbot.build_model(hidden_layers=[32, 16])
else:
print(
"No model found or incomplete model files. A new model will be built and trained"
)
chatbot.build_model(hidden_layers=[32, 16])
# Call initialize
initialize_chatbot()
# Chat history for the interface
chat_history = []
# Function to respond to user messages
def respond(message, history):
if not message:
return "Please type a message."
# Get response from chatbot
intent, response, confidence = chatbot.get_response(message)
# Add thinking animation (simulate processing)
time.sleep(0.5)
# Return the response
return response
# Function to get intent and confidence
def get_intent_info(message):
if not message:
return "N/A", 0.0
# Get intent and confidence
intent, confidence = chatbot.predict(message)
return intent, float(confidence)
# Function to add a new intent
def add_intent(intent_name, patterns, responses):
if not intent_name or not patterns or not responses:
return "Please fill all fields"
# Split patterns and responses
pattern_list = [p.strip() for p in patterns.split("\n") if p.strip()]
response_list = [r.strip() for r in responses.split("\n") if r.strip()]
if not pattern_list or not response_list:
return "Please provide at least one pattern and one response"
# Check if intent already exists
if intent_name in chatbot.intents:
# Update existing intent
chatbot.intents[intent_name]["patterns"].extend(pattern_list)
chatbot.intents[intent_name]["responses"].extend(response_list)
else:
# Add new intent
chatbot.intents[intent_name] = {
"patterns": pattern_list,
"responses": response_list,
}
chatbot.intent_names.append(intent_name)
# Save intents
chatbot.save_intents("intents.json")
return f"Intent '{intent_name}' added/updated successfully"
# Fixed train_model function with corrected format string
def train_model(epochs, learning_rate, hidden_layers_str, dropout_rate):
try:
# Parse hidden layers
hidden_layers = [
int(x.strip()) for x in hidden_layers_str.split(",") if x.strip()
]
if not hidden_layers:
return (
"Error: Invalid hidden layer format. Use comma-separated numbers, e.g. '32,16'",
None,
)
# Convert to float/int and use lower learning rate for stability
epochs = int(epochs)
learning_rate = min(
float(learning_rate), 0.005
) # Cap learning rate for stability
dropout_rate = float(dropout_rate)
# Validate intents and vocabulary
if len(chatbot.intent_names) < 2:
return (
"Error: Need at least 2 intents for training. Please add more intents.",
None,
)
if chatbot.text_processor.vocabulary_size == 0:
return (
"Error: No vocabulary built. Please add more patterns to your intents.",
None,
)
# Rebuild model with new architecture
chatbot.build_model(hidden_layers=hidden_layers, dropout_rate=dropout_rate)
# Train the model
history = chatbot.train(
epochs=epochs, learning_rate=learning_rate, verbose=True
)
# Check if training was successful
if not history or "loss" not in history or not history["loss"]:
return "Training failed - no history data returned", None
# Format final loss and accuracy safely
final_loss = history["loss"][-1] if history["loss"] else 0
final_accuracy = history["accuracy"][-1] if history["accuracy"] else 0
if np.isnan(final_loss):
final_loss_str = "NaN"
else:
final_loss_str = f"{final_loss:.4f}"
if np.isnan(final_accuracy):
final_accuracy_str = "NaN"
else:
final_accuracy_str = f"{final_accuracy:.4f}"
# Save the model
chatbot.save_model("chatbot_model.json")
# Generate plot image
img_str = chatbot.get_training_plot_as_base64(history)
return (
f"Model trained successfully with:\n"
f"- Epochs: {epochs}\n"
f"- Learning Rate: {learning_rate}\n"
f"- Hidden Layers: {hidden_layers}\n"
f"- Dropout Rate: {dropout_rate}\n"
f"- Final Loss: {final_loss_str}\n"
f"- Final Accuracy: {final_accuracy_str}"
), img_str
except Exception as e:
import traceback
error_details = traceback.format_exc()
return f"Error training model: {str(e)}\n\nDetails:\n{error_details}", None
# Function to load an existing model
def load_model_from_file(file_obj):
if not file_obj:
return "No file uploaded"
try:
file_path = file_obj.name
# Check file extension
if not file_path.endswith(".json"):
return "Please upload a JSON model file"
# Load the model
chatbot.load_model(file_path)
# Get the base name without extension for related files
base_name = os.path.splitext(file_path)[0]
processor_path = f"{base_name}_processor.json"
intents_names_path = f"{base_name}_intents.json"
# Check for related files
if os.path.exists(processor_path):
chatbot.text_processor = TextProcessor.load(processor_path)
if os.path.exists(intents_names_path):
with open(intents_names_path, "r") as f:
intents_data = json.load(f)
chatbot.intent_names = intents_data["intent_names"]
chatbot.confidence_threshold = intents_data.get(
"confidence_threshold", 0.5
)
chatbot.default_response = intents_data.get(
"default_response",
"I'm not sure I understand. Could you rephrase that?",
)
return f"Model loaded successfully from {file_path}"
except Exception as e:
return f"Error loading model: {str(e)}"
# Function to save the current model
def save_model():
try:
# Get timestamp for filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"chatbot_model_{timestamp}.json"
# Save the model
chatbot.save_model(filename)
return f"Model saved as {filename}"
except Exception as e:
return f"Error saving model: {str(e)}"
# Function to update settings
def update_settings(threshold, default_response):
try:
# Update settings
chatbot.confidence_threshold = float(threshold)
chatbot.default_response = default_response
# Save settings to the model intents file
with open("chatbot_model_intents.json", "w") as f:
json.dump(
{
"intent_names": chatbot.intent_names,
"confidence_threshold": chatbot.confidence_threshold,
"default_response": chatbot.default_response,
},
f,
)
return "Settings updated successfully"
except Exception as e:
return f"Error updating settings: {str(e)}"
# Function to list intents
def list_intents():
if not chatbot.intents:
return "No intents available"
intents_info = ""
for intent_name, intent_data in chatbot.intents.items():
patterns = ", ".join(intent_data["patterns"][:3])
if len(intent_data["patterns"]) > 3:
patterns += "..."
responses = ", ".join(intent_data["responses"][:3])
if len(intent_data["responses"]) > 3:
responses += "..."
intents_info += f"**Intent**: {intent_name}\n"
intents_info += f"**Patterns**: {patterns}\n"
intents_info += f"**Responses**: {responses}\n\n"
return intents_info
# Function to edit an intent
def edit_intent(intent_name, new_patterns, new_responses):
if not intent_name or intent_name not in chatbot.intents:
return f"Intent '{intent_name}' not found"
# Split patterns and responses
if new_patterns:
pattern_list = [p.strip() for p in new_patterns.split("\n") if p.strip()]
if pattern_list:
chatbot.intents[intent_name]["patterns"] = pattern_list
if new_responses:
response_list = [r.strip() for r in new_responses.split("\n") if r.strip()]
if response_list:
chatbot.intents[intent_name]["responses"] = response_list
# Save intents
chatbot.save_intents("intents.json")
return f"Intent '{intent_name}' updated successfully"
# Function to delete an intent
def delete_intent(intent_name):
if not intent_name or intent_name not in chatbot.intents:
return f"Intent '{intent_name}' not found"
# Delete intent
del chatbot.intents[intent_name]
chatbot.intent_names.remove(intent_name)
# Save intents
chatbot.save_intents("intents.json")
return f"Intent '{intent_name}' deleted successfully"
# Get the list of intents for dropdown
def get_intent_list():
return chatbot.intent_names
# Function to export intents
def export_intents():
try:
# Get timestamp for filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"intents_{timestamp}.json"
# Save intents
with open(filename, "w") as f:
json.dump(chatbot.intents, f, indent=4)
return f"Intents exported as {filename}"
except Exception as e:
return f"Error exporting intents: {str(e)}"
# Function to import intents
def import_intents_from_file(file_obj):
if not file_obj:
return "No file uploaded"
try:
file_path = file_obj.name
# Check file extension
if not file_path.endswith(".json"):
return "Please upload a JSON intents file"
# Load intents
with open(file_path, "r") as f:
intents_data = json.load(f)
# Validate intents format
for intent_name, intent_data in intents_data.items():
if (
not isinstance(intent_data, dict)
or "patterns" not in intent_data
or "responses" not in intent_data
):
return f"Invalid intent format for '{intent_name}'"
# Update chatbot intents
chatbot.load_intents(intents_data)
# Save intents
chatbot.save_intents("intents.json")
return f"Imported {len(intents_data)} intents from {file_path}"
except Exception as e:
return f"Error importing intents: {str(e)}"
# Function to get intent details
def get_intent_details(intent_name):
if not intent_name or intent_name not in chatbot.intents:
return "", ""
patterns = "\n".join(chatbot.intents[intent_name]["patterns"])
responses = "\n".join(chatbot.intents[intent_name]["responses"])
return patterns, responses
# Create the Gradio interface with multiple tabs
with gr.Blocks(title="Neural Network Chatbot", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🤖 Neural Network Chatbot")
gr.Markdown(
""" This chatbot uses a neural network to understand and respond to your messages.
This chatbot application was developed by:
| **Name** | **Student ID** | **Email** |
|----------|----------------|-----------|
| AARJEYAN SHRESTHA | C0927422 | [email protected] |
| PRAJWAL LUITEL | C0927658 | [email protected] |
| RAJAN GHIMIRE | C0924991 | [email protected] |
| RISHABH JHA | C0923563 | [email protected] |
| SUDIP CHAUDHARY | C0922310 | [email protected] |
- **Course**: Software Tools and Emerging Technologies for AI and ML
- **Term**: 3rd
- **Instructor**: [Peter Sigurdson](https://www.linkedin.com/in/petersigurdson/)
"""
)
with gr.Tabs():
# Chat tab
with gr.Tab("Chat"):
with gr.Row():
with gr.Column(scale=3):
chatbot_interface = gr.Chatbot(label="Conversation", height=400)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message here...",
label="Your message",
lines=2,
show_label=False,
)
send_btn = gr.Button("Send", variant="primary")
with gr.Accordion("Examples", open=False):
gr.Examples(
examples=[
"Hello!",
"How are you?",
"What can you help me with?",
"Thank you",
"Goodbye",
],
inputs=msg,
)
with gr.Column(scale=1):
gr.Markdown("### Analysis")
intent_label = gr.Label(label="Predicted Intent")
confidence_score = gr.Number(label="Confidence Score")
gr.Markdown("### Settings")
confidence_slider = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=chatbot.confidence_threshold,
)
default_resp = gr.Textbox(
label="Default Response",
value=chatbot.default_response,
lines=2,
)
update_settings_btn = gr.Button("Update Settings")
# Event handlers for chat
def user_message(user_message, history):
return "", history + [[user_message, None]]
def bot_message(history):
if history:
user_message = history[-1][0]
intent, response, confidence = chatbot.get_response(user_message)
history[-1][1] = response
return history, intent, confidence
return history, "N/A", 0.0
msg.submit(
user_message,
[msg, chatbot_interface],
[msg, chatbot_interface],
queue=False,
).then(
bot_message,
chatbot_interface,
[chatbot_interface, intent_label, confidence_score],
)
send_btn.click(
user_message,
[msg, chatbot_interface],
[msg, chatbot_interface],
queue=False,
).then(
bot_message,
chatbot_interface,
[chatbot_interface, intent_label, confidence_score],
)
update_settings_btn.click(
update_settings,
[confidence_slider, default_resp],
gr.Textbox(label="Status"),
)
# Intents Management tab
with gr.Tab("Intents Management"):
with gr.Row():
with gr.Column():
gr.Markdown("### Add New Intent")
new_intent_name = gr.Textbox(label="Intent Name")
new_patterns = gr.Textbox(label="Patterns (one per line)", lines=5)
new_responses = gr.Textbox(
label="Responses (one per line)", lines=5
)
add_intent_btn = gr.Button("Add Intent", variant="primary")
add_intent_status = gr.Textbox(label="Status")
with gr.Column():
gr.Markdown("### Edit Intent")
edit_intent_dropdown = gr.Dropdown(
label="Select Intent to Edit",
choices=get_intent_list(),
interactive=True,
)
edit_patterns = gr.Textbox(label="Patterns (one per line)", lines=5)
edit_responses = gr.Textbox(
label="Responses (one per line)", lines=5
)
with gr.Row():
update_intent_btn = gr.Button("Update Intent")
delete_intent_btn = gr.Button("Delete Intent", variant="stop")
edit_intent_status = gr.Textbox(label="Status")
with gr.Row():
with gr.Column():
gr.Markdown("### Import/Export Intents")
with gr.Row():
export_intents_btn = gr.Button("Export Intents")
import_intents_file = gr.File(
label="Import Intents (JSON file)"
)
import_export_status = gr.Textbox(label="Status")
with gr.Column():
gr.Markdown("### Current Intents")
refresh_intents_btn = gr.Button("Refresh Intents List")
intents_list = gr.Markdown()
# Event handlers for intents management
add_intent_btn.click(
add_intent,
[new_intent_name, new_patterns, new_responses],
add_intent_status,
)
# Update dropdown when adding/deleting intents
add_intent_btn.click(get_intent_list, [], edit_intent_dropdown)
edit_intent_dropdown.change(
get_intent_details,
edit_intent_dropdown,
[edit_patterns, edit_responses],
)
update_intent_btn.click(
edit_intent,
[edit_intent_dropdown, edit_patterns, edit_responses],
edit_intent_status,
)
delete_intent_btn.click(
delete_intent, edit_intent_dropdown, edit_intent_status
).then(get_intent_list, [], edit_intent_dropdown)
export_intents_btn.click(export_intents, [], import_export_status)
import_intents_file.change(
import_intents_from_file, import_intents_file, import_export_status
).then(get_intent_list, [], edit_intent_dropdown)
refresh_intents_btn.click(list_intents, [], intents_list)
# Training tab
with gr.Tab("Training"):
with gr.Row():
with gr.Column():
gr.Markdown("### Train Model")
epochs_input = gr.Number(
label="Epochs", value=500, minimum=100, maximum=5000, step=100
)
learning_rate_input = gr.Number(
label="Learning Rate",
value=0.01,
minimum=0.0001,
maximum=0.1,
step=0.001,
)
hidden_layers_input = gr.Textbox(
label="Hidden Layers (comma-separated)", value="32, 16"
)
dropout_rate_input = gr.Number(
label="Dropout Rate",
value=0.2,
minimum=0.0,
maximum=0.5,
step=0.05,
)
train_btn = gr.Button("Train Model", variant="primary")
with gr.Column():
training_status = gr.Textbox(label="Training Status", lines=6)
training_plot = gr.Image(label="Training History")
with gr.Row():
with gr.Column():
gr.Markdown("### Model Management")
save_model_btn = gr.Button("Save Current Model")
load_model_file = gr.File(label="Load Model (JSON file)")
model_status = gr.Textbox(label="Status")
# Event handlers for training
train_btn.click(
train_model,
[
epochs_input,
learning_rate_input,
hidden_layers_input,
dropout_rate_input,
],
[training_status, training_plot],
)
save_model_btn.click(save_model, [], model_status)
load_model_file.change(load_model_from_file, load_model_file, model_status)
# About tab
with gr.Tab("About"):
gr.Markdown(
"""
## Neural Network Chatbot
This chatbot uses a neural network to understand and respond to user messages.
The model is trained on a set of intents, each with patterns and responses.
### Features:
- **Neural Network Backend**: The chatbot uses a fully-connected neural network with configurable layers.
- **Intent Recognition**: Recognizes user intents based on trained patterns.
- **Customizable Responses**: Each intent has multiple possible responses for variety.
- **Training Interface**: Train the model directly from the web interface.
- **Intent Management**: Add, edit, delete, import, and export intents.
- **Model Management**: Save and load models for future use.
### How to Use:
1. **Chat Tab**: Interact with the chatbot.
2. **Intents Management Tab**: Manage the chatbot's knowledge.
3. **Training Tab**: Train the neural network model.
4. **About Tab**: Learn about the chatbot and its features.
### Technical Details:
- Built with Python, NumPy, and Gradio.
- Uses a bag-of-words approach for text representation.
- Neural network with configurable hidden layers and activation functions.
- Cross-entropy loss for multi-class classification.
Created for deployment on Hugging Face Spaces.
"""
)
# Call initialize again after defining the UI
# to make sure dropdown is populated
chat_intents = get_intent_list()
# Launch the app
if __name__ == "__main__":
demo.launch()