File size: 48,847 Bytes
c03de54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
import gradio as gr
import numpy as np
import json
import re
import random
from typing import List, Dict, Tuple, Optional
import os
import time
import matplotlib.pyplot as plt
from io import BytesIO
import base64
from datetime import datetime

# Assuming all the classes (ActivationFunctions, LossFunctions, Layer, DenseLayer,
# DropoutLayer, NeuralNetwork, TextProcessor, Chatbot) are defined as in your uploaded code
# I'm not repeating them here for brevity


class ActivationFunctions:
    """Class containing various activation functions and their derivatives."""

    @staticmethod
    def sigmoid(z: np.ndarray) -> np.ndarray:
        """Sigmoid activation function."""
        z = np.clip(z, -500, 500)
        return 1 / (1 + np.exp(-z))

    @staticmethod
    def sigmoid_derivative(z: np.ndarray) -> np.ndarray:
        """Derivative of the sigmoid function."""
        s = ActivationFunctions.sigmoid(z)
        return s * (1 - s)

    @staticmethod
    def relu(z: np.ndarray) -> np.ndarray:
        """ReLU activation function."""
        return np.maximum(0, z)

    @staticmethod
    def relu_derivative(z: np.ndarray) -> np.ndarray:
        """Derivative of the ReLU function."""
        return np.where(z > 0, 1, 0)

    @staticmethod
    def softmax(z: np.ndarray) -> np.ndarray:
        """Softmax activation function."""
        exp_z = np.exp(z - np.max(z))
        return exp_z / exp_z.sum(axis=0, keepdims=True)


class LossFunctions:
    """Class containing various loss functions and their derivatives."""

    @staticmethod
    def mse(output: np.ndarray, target: np.ndarray) -> float:
        """Mean Squared Error loss."""
        return np.mean((output - target) ** 2)

    @staticmethod
    def mse_derivative(output: np.ndarray, target: np.ndarray) -> np.ndarray:
        """Derivative of MSE loss."""
        return 2 * (output - target) / output.size

    @staticmethod
    def cross_entropy(output: np.ndarray, target: np.ndarray) -> float:
        """Cross Entropy loss for multi-class classification."""
        epsilon = 1e-15
        output = np.clip(output, epsilon, 1 - epsilon)
        return -np.sum(target * np.log(output)) / output.shape[1]

    @staticmethod
    def cross_entropy_derivative(output: np.ndarray, target: np.ndarray) -> np.ndarray:
        """Derivative of Cross Entropy loss."""
        epsilon = 1e-15
        output = np.clip(output, epsilon, 1 - epsilon)
        return -target / output / output.shape[1]


class Layer:
    """Base class for neural network layers."""

    def forward(self, inputs: np.ndarray) -> np.ndarray:
        """Forward pass through the layer."""
        raise NotImplementedError

    def backward(self, grad: np.ndarray) -> np.ndarray:
        """Backward pass through the layer."""
        raise NotImplementedError

    def update(self, learning_rate: float) -> None:
        """Update layer parameters."""
        pass

    def get_parameters(self) -> List:
        """Get layer parameters."""
        return []


class DenseLayer(Layer):
    """Fully connected layer with improved numerical stability."""

    def __init__(self, input_size: int, output_size: int, activation: str = "sigmoid"):
        """Initialize the dense layer with more stable parameters."""
        self.input_size = input_size
        self.output_size = output_size

        # Use smaller initialization to prevent exploding gradients
        # Xavier/Glorot initialization with smaller scale factor
        self.weights = np.random.randn(output_size, input_size) * np.sqrt(
            1 / (input_size + output_size)
        )
        self.biases = np.zeros((output_size, 1))

        # Set activation function
        if activation == "sigmoid":
            self.activation_fn = ActivationFunctions.sigmoid
            self.activation_derivative = ActivationFunctions.sigmoid_derivative
        elif activation == "relu":
            self.activation_fn = ActivationFunctions.relu
            self.activation_derivative = ActivationFunctions.relu_derivative
        elif activation == "softmax":
            self.activation_fn = ActivationFunctions.softmax
            self.activation_derivative = None
        else:
            raise ValueError(f"Unsupported activation function: {activation}")

        self.activation_name = activation

        # Cache for backward pass
        self.inputs = None
        self.z = None
        self.output = None

        # Gradients
        self.dW = None
        self.db = None

    def forward(self, inputs: np.ndarray) -> np.ndarray:
        """Forward pass through the layer with improved numerical stability."""
        self.inputs = inputs

        # Use dot product with better numerical stability
        self.z = np.dot(self.weights, inputs) + self.biases

        # Clip values to prevent overflow in activations
        if self.activation_name == "sigmoid":
            self.z = np.clip(self.z, -15, 15)  # Prevent overflow in sigmoid

        self.output = self.activation_fn(self.z)

        # Add small epsilon to prevent exact zeros or ones
        if self.activation_name == "softmax":
            epsilon = 1e-10
            self.output = np.clip(self.output, epsilon, 1.0 - epsilon)

        return self.output

    def backward(self, grad: np.ndarray) -> np.ndarray:
        """Backward pass through the layer with gradient clipping."""
        if self.activation_name == "softmax":
            # Special case for softmax + cross-entropy
            delta = grad
        else:
            delta = grad * self.activation_derivative(self.z)

        # Compute gradients
        self.dW = np.dot(delta, self.inputs.T)
        self.db = np.sum(delta, axis=1, keepdims=True)

        # Clip gradients to prevent exploding gradients
        max_grad_norm = 5.0
        self.dW = np.clip(self.dW, -max_grad_norm, max_grad_norm)
        self.db = np.clip(self.db, -max_grad_norm, max_grad_norm)

        # Gradient to pass to the previous layer
        return np.dot(self.weights.T, delta)

    def update(self, learning_rate: float) -> None:
        """Update layer parameters using gradient descent with weight decay."""
        # Add small weight decay to prevent overfitting
        weight_decay = 1e-4
        weight_decay_term = weight_decay * self.weights

        self.weights -= learning_rate * (self.dW + weight_decay_term)
        self.biases -= learning_rate * self.db


class DropoutLayer(Layer):
    """Dropout layer for regularization."""

    def __init__(self, dropout_rate: float = 0.5):
        """Initialize the dropout layer."""
        self.dropout_rate = dropout_rate
        self.mask = None

    def forward(self, inputs: np.ndarray, training: bool = True) -> np.ndarray:
        """Forward pass through the layer."""
        if not training:
            return inputs

        # Create dropout mask
        self.mask = np.random.binomial(1, 1 - self.dropout_rate, size=inputs.shape) / (
            1 - self.dropout_rate
        )
        return inputs * self.mask

    def backward(self, grad: np.ndarray) -> np.ndarray:
        """Backward pass through the layer."""
        return grad * self.mask


class NeuralNetwork:
    """Neural network with multiple layers."""

    def __init__(self):
        """Initialize the neural network."""
        self.layers = []
        self.loss_fn = None
        self.loss_derivative = None

    def add(self, layer: Layer) -> None:
        """Add a layer to the network."""
        self.layers.append(layer)

    def set_loss(self, loss_type: str) -> None:
        """Set the loss function."""
        if loss_type == "mse":
            self.loss_fn = LossFunctions.mse
            self.loss_derivative = LossFunctions.mse_derivative
        elif loss_type == "cross_entropy":
            self.loss_fn = LossFunctions.cross_entropy
            self.loss_derivative = LossFunctions.cross_entropy_derivative
        else:
            raise ValueError(f"Unsupported loss function: {loss_type}")

    def forward(self, x: np.ndarray, training: bool = True) -> np.ndarray:
        """Forward pass through the network."""
        output = x
        for layer in self.layers:
            if isinstance(layer, DropoutLayer):
                output = layer.forward(output, training)
            else:
                output = layer.forward(output)
        return output

    def compute_loss(self, y_pred: np.ndarray, y_true: np.ndarray) -> float:
        """Compute the loss."""
        return self.loss_fn(y_pred, y_true)

    def backward(self, y_pred: np.ndarray, y_true: np.ndarray) -> None:
        """Backward pass through the network."""
        # Initial gradient from the loss function
        grad = self.loss_derivative(y_pred, y_true)

        # Propagate gradient through layers in reverse order
        for layer in reversed(self.layers):
            grad = layer.backward(grad)

    def update(self, learning_rate: float) -> None:
        """Update network parameters."""
        for layer in self.layers:
            layer.update(learning_rate)

    def predict(self, x: np.ndarray) -> np.ndarray:
        """Make predictions."""
        return self.forward(x, training=False)

    @classmethod
    def load(cls, filename: str) -> "NeuralNetwork":
        """Load a model from a file."""
        with open(filename, "r") as f:
            model_data = json.load(f)

        network = cls()
        network.set_loss(model_data.get("loss_type", "cross_entropy"))

        for layer_data in model_data["layers"]:
            if layer_data["type"] == "dense":
                layer = DenseLayer(
                    layer_data["input_size"],
                    layer_data["output_size"],
                    layer_data["activation"],
                )
                layer.weights = np.array(layer_data["weights"])
                layer.biases = np.array(layer_data["biases"])
                network.add(layer)
            elif layer_data["type"] == "dropout":
                layer = DropoutLayer(layer_data["dropout_rate"])
                network.add(layer)

        return network

    def save(self, filename: str) -> None:
        """Save the model to a file."""
        model_data = {"layers": []}

        for layer in self.layers:
            if isinstance(layer, DenseLayer):
                layer_data = {
                    "type": "dense",
                    "input_size": layer.input_size,
                    "output_size": layer.output_size,
                    "activation": layer.activation_name,
                    "weights": layer.weights.tolist(),
                    "biases": layer.biases.tolist(),
                }
                model_data["layers"].append(layer_data)
            elif isinstance(layer, DropoutLayer):
                layer_data = {"type": "dropout", "dropout_rate": layer.dropout_rate}
                model_data["layers"].append(layer_data)

        with open(filename, "w") as f:
            json.dump(model_data, f)


class TextProcessor:
    """Class for processing text data."""

    def __init__(self):
        """Initialize the text processor."""
        self.vocabulary = []
        self.vocabulary_size = 0

    def tokenize(self, sentence: str) -> List[str]:
        """Tokenize a sentence."""
        return re.findall(r"\w+", sentence.lower())

    def build_vocabulary(self, sentences: List[str]) -> None:
        """Build the vocabulary from a list of sentences."""
        vocabulary = set()
        for sentence in sentences:
            tokens = self.tokenize(sentence)
            vocabulary.update(tokens)

        self.vocabulary = sorted(list(vocabulary))
        self.vocabulary_size = len(self.vocabulary)

    def sentence_to_bow(self, sentence: str) -> np.ndarray:
        """Convert a sentence to a bag-of-words vector."""
        tokens = self.tokenize(sentence)
        vector = np.zeros((self.vocabulary_size, 1))

        for token in tokens:
            if token in self.vocabulary:
                idx = self.vocabulary.index(token)
                vector[idx, 0] = 1

        return vector

    def save(self, filename: str) -> None:
        """Save the text processor to a file."""
        processor_data = {
            "vocabulary": self.vocabulary,
            "vocabulary_size": self.vocabulary_size,
        }

        with open(filename, "w") as f:
            json.dump(processor_data, f)

    @classmethod
    def load(cls, filename: str) -> "TextProcessor":
        """Load a text processor from a file."""
        with open(filename, "r") as f:
            processor_data = json.load(f)

        processor = cls()
        processor.vocabulary = processor_data["vocabulary"]
        processor.vocabulary_size = processor_data["vocabulary_size"]

        return processor


class Chatbot:
    """Neural network based chatbot."""

    def __init__(self):
        """Initialize the chatbot."""
        self.intents = {}
        self.text_processor = TextProcessor()
        self.model = NeuralNetwork()
        self.intent_names = []
        self.confidence_threshold = 0.5
        self.default_response = "I'm not sure I understand. Could you rephrase that?"
        self.training_history = None

    def load_intents(self, intents_data: Dict) -> None:
        """Load intents data."""
        self.intents = intents_data
        self.intent_names = list(self.intents.keys())

        # Extract all patterns for building vocabulary
        all_patterns = []
        for intent in self.intents.values():
            all_patterns.extend(intent["patterns"])

        # Build vocabulary from patterns
        self.text_processor.build_vocabulary(all_patterns)

    def load_intents_from_file(self, filename: str) -> None:
        """Load intents from a JSON file."""
        with open(filename, "r") as f:
            intents_data = json.load(f)

        self.load_intents(intents_data)

    def save_intents(self, filename: str) -> None:
        """Save intents to a JSON file."""
        with open(filename, "w") as f:
            json.dump(self.intents, f, indent=4)

    def load_model(self, filename: str) -> None:
        """Load a model from a file."""
        self.model = NeuralNetwork.load(filename)

    def save_model(self, filename: str) -> None:
        """Save the model to a file."""
        self.model.save(filename)
        # Also save the text processor and intent names
        self.text_processor.save(filename.replace(".json", "_processor.json"))

        # Save intent names
        with open(filename.replace(".json", "_intents.json"), "w") as f:
            json.dump(
                {
                    "intent_names": self.intent_names,
                    "confidence_threshold": self.confidence_threshold,
                    "default_response": self.default_response,
                },
                f,
            )

    def build_model(
        self, hidden_layers: List[int] = [8], dropout_rate: float = 0.0
    ) -> None:
        """Build the neural network model."""
        # Input layer size is the vocabulary size
        input_size = self.text_processor.vocabulary_size

        # Output layer size is the number of intents
        output_size = len(self.intent_names)

        if output_size == 0:
            raise ValueError("No intents loaded. Please load intents first.")

        # Create the model
        self.model = NeuralNetwork()

        # Add first hidden layer
        self.model.add(DenseLayer(input_size, hidden_layers[0], "relu"))

        # Add dropout if needed
        if dropout_rate > 0:
            self.model.add(DropoutLayer(dropout_rate))

        # Add additional hidden layers
        for i in range(1, len(hidden_layers)):
            self.model.add(DenseLayer(hidden_layers[i - 1], hidden_layers[i], "relu"))

            # Add dropout if needed
            if dropout_rate > 0:
                self.model.add(DropoutLayer(dropout_rate))

        # Add output layer with softmax activation for classification
        self.model.add(DenseLayer(hidden_layers[-1], output_size, "softmax"))

        # Set cross-entropy loss for classification
        self.model.set_loss("cross_entropy")

    def train(
        self,
        epochs: int = 1000,
        learning_rate: float = 0.01,
        batch_size: int = None,
        verbose: bool = True,
    ) -> Dict:
        """Train the model with numerical stability fixes."""
        # Prepare training data
        X_train = []
        y_train = []

        for idx, intent in enumerate(self.intent_names):
            for pattern in self.intents[intent]["patterns"]:
                # Convert pattern to bag-of-words
                X_train.append(self.text_processor.sentence_to_bow(pattern))

                # Create one-hot encoded target
                target = np.zeros((len(self.intent_names), 1))
                target[idx, 0] = 1
                y_train.append(target)

        # Convert to numpy arrays
        X_train = np.hstack(X_train)
        y_train = np.hstack(y_train)

        # Training history
        history = {"loss": [], "accuracy": []}

        # Apply gradient clipping to prevent exploding gradients
        max_grad_norm = 1.0

        # Training loop
        for epoch in range(epochs):
            # Forward pass
            outputs = self.model.forward(X_train)

            # Add small epsilon to prevent log(0)
            epsilon = 1e-10
            outputs = np.clip(outputs, epsilon, 1.0 - epsilon)

            # Compute loss
            loss = self.model.compute_loss(outputs, y_train)

            # Check for NaN and if found, break training
            if np.isnan(loss):
                if verbose:
                    print(f"NaN loss detected at epoch {epoch+1}. Stopping training.")

                # If we have previous good values, use those
                if epoch > 0:
                    break
                else:
                    # Otherwise, return with error
                    return {"loss": [0], "accuracy": [0]}

            # Backward pass
            self.model.backward(outputs, y_train)

            # Apply gradient clipping to each layer
            for layer in self.model.layers:
                if hasattr(layer, "dW") and layer.dW is not None:
                    # Clip gradients
                    layer.dW = np.clip(layer.dW, -max_grad_norm, max_grad_norm)
                if hasattr(layer, "db") and layer.db is not None:
                    layer.db = np.clip(layer.db, -max_grad_norm, max_grad_norm)

            # Update parameters
            self.model.update(learning_rate)

            # Compute accuracy
            predictions = np.argmax(outputs, axis=0)
            targets = np.argmax(y_train, axis=0)
            accuracy = np.mean(predictions == targets)

            # Save history
            history["loss"].append(
                float(loss)
            )  # Convert to Python float to ensure it's serializable
            history["accuracy"].append(float(accuracy))

            # Print progress
            if verbose and (epoch + 1) % 100 == 0:
                print(
                    f"Epoch {epoch + 1}/{epochs}, Loss: {loss:.4f}, Accuracy: {accuracy:.4f}"
                )

        self.training_history = history
        return history

    def predict(self, sentence: str) -> Tuple[str, float]:
        """Predict the intent of a sentence."""
        # Convert to bag-of-words
        bow = self.text_processor.sentence_to_bow(sentence)

        # Get prediction
        prediction = self.model.predict(bow)

        # Get predicted intent and confidence
        intent_idx = np.argmax(prediction)
        confidence = prediction[intent_idx, 0]

        return self.intent_names[intent_idx], confidence

    def get_response(self, sentence: str) -> Tuple[str, str, float]:
        """Get a response for a user input."""
        intent, confidence = self.predict(sentence)

        # Use default response if confidence is below threshold
        if confidence < self.confidence_threshold:
            return "unknown", self.default_response, confidence

        # Get a random response for the predicted intent
        responses = self.intents[intent]["responses"]
        response = random.choice(responses)

        return intent, response, confidence

    def plot_training_history(self, history: Dict = None) -> None:
        """Plot the training history."""
        if history is None:
            history = self.training_history

        if history is None:
            print("No training history available.")
            return

        plt.figure(figsize=(12, 5))

        plt.subplot(1, 2, 1)
        plt.plot(history["loss"])
        plt.title("Model Loss")
        plt.xlabel("Epoch")
        plt.ylabel("Loss")

        plt.subplot(1, 2, 2)
        plt.plot(history["accuracy"])
        plt.title("Model Accuracy")
        plt.xlabel("Epoch")
        plt.ylabel("Accuracy")

        plt.tight_layout()
        plt.show()

    def get_training_plot_as_base64(self, history: Dict = None) -> str:
        """Generate a base64 encoded image of the training history plot with improved error handling."""
        if history is None:
            history = self.training_history

        if history is None or "loss" not in history or len(history["loss"]) == 0:
            return None

        try:
            plt.figure(figsize=(12, 5))

            # Check for NaN values and filter them out
            loss_values = [x for x in history["loss"] if not np.isnan(x)]
            acc_values = [x for x in history["accuracy"] if not np.isnan(x)]

            if len(loss_values) == 0 or len(acc_values) == 0:
                return None

            # Plot loss (with error handling)
            plt.subplot(1, 2, 1)
            plt.plot(loss_values)
            plt.title("Model Loss")
            plt.xlabel("Epoch")
            plt.ylabel("Loss")

            # Plot accuracy (with error handling)
            plt.subplot(1, 2, 2)
            plt.plot(acc_values)
            plt.title("Model Accuracy")
            plt.xlabel("Epoch")
            plt.ylabel("Accuracy")

            plt.tight_layout()

            # Save plot to a BytesIO object
            buf = BytesIO()
            plt.savefig(buf, format="png")
            buf.seek(0)

            # Encode to base64
            img_str = base64.b64encode(buf.read()).decode("utf-8")

            plt.close()

            # Save the image to a file instead of returning the base64 string directly
            # This avoids the file name too long error
            img_path = "training_plot.png"
            with open(img_path, "wb") as f:
                f.write(base64.b64decode(img_str))

            return img_path
        except Exception as e:
            print(f"Error generating training plot: {str(e)}")
            return None

    def chat(self):
        """Start a chat session in the console."""
        print("Chatbot: Hello! Type 'quit' to exit.")

        while True:
            user_input = input("You: ")

            if user_input.lower() in ["quit", "exit", "bye"]:
                print("Chatbot: Goodbye!")
                break

            intent, response, confidence = self.get_response(user_input)
            print(f"Chatbot ({intent}, {confidence:.2f}): {response}")


# Initialize the chatbot
chatbot = Chatbot()

# Default intents
default_intents = {
    "greeting": {
        "patterns": ["Hi", "Hello", "Hey", "Good morning", "What's up"],
        "responses": ["Hello!", "Hi there!", "Greetings!", "Hey! How can I help you?"],
    },
    "farewell": {
        "patterns": ["Bye", "See you", "Goodbye", "Later", "I'm leaving"],
        "responses": ["Goodbye!", "See you later!", "Farewell!", "Take care!"],
    },
    "thanks": {
        "patterns": ["Thanks", "Thank you", "Much appreciated", "Appreciate it"],
        "responses": ["You're welcome!", "No problem!", "Anytime!", "Glad to help!"],
    },
    "help": {
        "patterns": ["Help", "I need help", "Can you help me", "Support"],
        "responses": [
            "How can I help you?",
            "I'm here to assist you.",
            "What do you need help with?",
        ],
    },
}


# Function to initialize the chatbot
def initialize_chatbot():
    global chatbot

    # Check if model exists
    model_path = "chatbot_model.json"
    processor_path = "chatbot_model_processor.json"
    intents_names_path = "chatbot_model_intents.json"
    intents_path = "intents.json"

    # Check if intents file exists
    if os.path.exists(intents_path):
        try:
            chatbot.load_intents_from_file(intents_path)
            print(f"Loaded intents from {intents_path}")
        except Exception as e:
            print(f"Error loading intents: {e}")
            print("Loading default intents")
            chatbot.load_intents(default_intents)
    else:
        print("No intents file found. Loading default intents")
        chatbot.load_intents(default_intents)
        # Save default intents
        chatbot.save_intents(intents_path)

    # Check if all model files exist
    if (
        os.path.exists(model_path)
        and os.path.exists(processor_path)
        and os.path.exists(intents_names_path)
    ):
        try:
            # Load the model
            chatbot.load_model(model_path)

            # Load the text processor
            chatbot.text_processor = TextProcessor.load(processor_path)

            # Load intent names and settings
            with open(intents_names_path, "r") as f:
                intents_data = json.load(f)
                chatbot.intent_names = intents_data["intent_names"]
                chatbot.confidence_threshold = intents_data.get(
                    "confidence_threshold", 0.5
                )
                chatbot.default_response = intents_data.get(
                    "default_response",
                    "I'm not sure I understand. Could you rephrase that?",
                )

            print(f"Loaded existing model from {model_path}")
        except Exception as e:
            print(f"Error loading model: {e}")
            print("A new model will be built and trained")
            chatbot.build_model(hidden_layers=[32, 16])
    else:
        print(
            "No model found or incomplete model files. A new model will be built and trained"
        )
        chatbot.build_model(hidden_layers=[32, 16])


# Call initialize
initialize_chatbot()

# Chat history for the interface
chat_history = []


# Function to respond to user messages
def respond(message, history):
    if not message:
        return "Please type a message."

    # Get response from chatbot
    intent, response, confidence = chatbot.get_response(message)

    # Add thinking animation (simulate processing)
    time.sleep(0.5)

    # Return the response
    return response


# Function to get intent and confidence
def get_intent_info(message):
    if not message:
        return "N/A", 0.0

    # Get intent and confidence
    intent, confidence = chatbot.predict(message)
    return intent, float(confidence)


# Function to add a new intent
def add_intent(intent_name, patterns, responses):
    if not intent_name or not patterns or not responses:
        return "Please fill all fields"

    # Split patterns and responses
    pattern_list = [p.strip() for p in patterns.split("\n") if p.strip()]
    response_list = [r.strip() for r in responses.split("\n") if r.strip()]

    if not pattern_list or not response_list:
        return "Please provide at least one pattern and one response"

    # Check if intent already exists
    if intent_name in chatbot.intents:
        # Update existing intent
        chatbot.intents[intent_name]["patterns"].extend(pattern_list)
        chatbot.intents[intent_name]["responses"].extend(response_list)
    else:
        # Add new intent
        chatbot.intents[intent_name] = {
            "patterns": pattern_list,
            "responses": response_list,
        }
        chatbot.intent_names.append(intent_name)

    # Save intents
    chatbot.save_intents("intents.json")

    return f"Intent '{intent_name}' added/updated successfully"


# Fixed train_model function with corrected format string
def train_model(epochs, learning_rate, hidden_layers_str, dropout_rate):
    try:
        # Parse hidden layers
        hidden_layers = [
            int(x.strip()) for x in hidden_layers_str.split(",") if x.strip()
        ]

        if not hidden_layers:
            return (
                "Error: Invalid hidden layer format. Use comma-separated numbers, e.g. '32,16'",
                None,
            )

        # Convert to float/int and use lower learning rate for stability
        epochs = int(epochs)
        learning_rate = min(
            float(learning_rate), 0.005
        )  # Cap learning rate for stability
        dropout_rate = float(dropout_rate)

        # Validate intents and vocabulary
        if len(chatbot.intent_names) < 2:
            return (
                "Error: Need at least 2 intents for training. Please add more intents.",
                None,
            )

        if chatbot.text_processor.vocabulary_size == 0:
            return (
                "Error: No vocabulary built. Please add more patterns to your intents.",
                None,
            )

        # Rebuild model with new architecture
        chatbot.build_model(hidden_layers=hidden_layers, dropout_rate=dropout_rate)

        # Train the model
        history = chatbot.train(
            epochs=epochs, learning_rate=learning_rate, verbose=True
        )

        # Check if training was successful
        if not history or "loss" not in history or not history["loss"]:
            return "Training failed - no history data returned", None

        # Format final loss and accuracy safely
        final_loss = history["loss"][-1] if history["loss"] else 0
        final_accuracy = history["accuracy"][-1] if history["accuracy"] else 0

        if np.isnan(final_loss):
            final_loss_str = "NaN"
        else:
            final_loss_str = f"{final_loss:.4f}"

        if np.isnan(final_accuracy):
            final_accuracy_str = "NaN"
        else:
            final_accuracy_str = f"{final_accuracy:.4f}"

        # Save the model
        chatbot.save_model("chatbot_model.json")

        # Generate plot image
        img_str = chatbot.get_training_plot_as_base64(history)

        return (
            f"Model trained successfully with:\n"
            f"- Epochs: {epochs}\n"
            f"- Learning Rate: {learning_rate}\n"
            f"- Hidden Layers: {hidden_layers}\n"
            f"- Dropout Rate: {dropout_rate}\n"
            f"- Final Loss: {final_loss_str}\n"
            f"- Final Accuracy: {final_accuracy_str}"
        ), img_str
    except Exception as e:
        import traceback

        error_details = traceback.format_exc()
        return f"Error training model: {str(e)}\n\nDetails:\n{error_details}", None


# Function to load an existing model
def load_model_from_file(file_obj):
    if not file_obj:
        return "No file uploaded"

    try:
        file_path = file_obj.name

        # Check file extension
        if not file_path.endswith(".json"):
            return "Please upload a JSON model file"

        # Load the model
        chatbot.load_model(file_path)

        # Get the base name without extension for related files
        base_name = os.path.splitext(file_path)[0]
        processor_path = f"{base_name}_processor.json"
        intents_names_path = f"{base_name}_intents.json"

        # Check for related files
        if os.path.exists(processor_path):
            chatbot.text_processor = TextProcessor.load(processor_path)

        if os.path.exists(intents_names_path):
            with open(intents_names_path, "r") as f:
                intents_data = json.load(f)
                chatbot.intent_names = intents_data["intent_names"]
                chatbot.confidence_threshold = intents_data.get(
                    "confidence_threshold", 0.5
                )
                chatbot.default_response = intents_data.get(
                    "default_response",
                    "I'm not sure I understand. Could you rephrase that?",
                )

        return f"Model loaded successfully from {file_path}"
    except Exception as e:
        return f"Error loading model: {str(e)}"


# Function to save the current model
def save_model():
    try:
        # Get timestamp for filename
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"chatbot_model_{timestamp}.json"

        # Save the model
        chatbot.save_model(filename)

        return f"Model saved as {filename}"
    except Exception as e:
        return f"Error saving model: {str(e)}"


# Function to update settings
def update_settings(threshold, default_response):
    try:
        # Update settings
        chatbot.confidence_threshold = float(threshold)
        chatbot.default_response = default_response

        # Save settings to the model intents file
        with open("chatbot_model_intents.json", "w") as f:
            json.dump(
                {
                    "intent_names": chatbot.intent_names,
                    "confidence_threshold": chatbot.confidence_threshold,
                    "default_response": chatbot.default_response,
                },
                f,
            )

        return "Settings updated successfully"
    except Exception as e:
        return f"Error updating settings: {str(e)}"


# Function to list intents
def list_intents():
    if not chatbot.intents:
        return "No intents available"

    intents_info = ""
    for intent_name, intent_data in chatbot.intents.items():
        patterns = ", ".join(intent_data["patterns"][:3])
        if len(intent_data["patterns"]) > 3:
            patterns += "..."

        responses = ", ".join(intent_data["responses"][:3])
        if len(intent_data["responses"]) > 3:
            responses += "..."

        intents_info += f"**Intent**: {intent_name}\n"
        intents_info += f"**Patterns**: {patterns}\n"
        intents_info += f"**Responses**: {responses}\n\n"

    return intents_info


# Function to edit an intent
def edit_intent(intent_name, new_patterns, new_responses):
    if not intent_name or intent_name not in chatbot.intents:
        return f"Intent '{intent_name}' not found"

    # Split patterns and responses
    if new_patterns:
        pattern_list = [p.strip() for p in new_patterns.split("\n") if p.strip()]
        if pattern_list:
            chatbot.intents[intent_name]["patterns"] = pattern_list

    if new_responses:
        response_list = [r.strip() for r in new_responses.split("\n") if r.strip()]
        if response_list:
            chatbot.intents[intent_name]["responses"] = response_list

    # Save intents
    chatbot.save_intents("intents.json")

    return f"Intent '{intent_name}' updated successfully"


# Function to delete an intent
def delete_intent(intent_name):
    if not intent_name or intent_name not in chatbot.intents:
        return f"Intent '{intent_name}' not found"

    # Delete intent
    del chatbot.intents[intent_name]
    chatbot.intent_names.remove(intent_name)

    # Save intents
    chatbot.save_intents("intents.json")

    return f"Intent '{intent_name}' deleted successfully"


# Get the list of intents for dropdown
def get_intent_list():
    return chatbot.intent_names


# Function to export intents
def export_intents():
    try:
        # Get timestamp for filename
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"intents_{timestamp}.json"

        # Save intents
        with open(filename, "w") as f:
            json.dump(chatbot.intents, f, indent=4)

        return f"Intents exported as {filename}"
    except Exception as e:
        return f"Error exporting intents: {str(e)}"


# Function to import intents
def import_intents_from_file(file_obj):
    if not file_obj:
        return "No file uploaded"

    try:
        file_path = file_obj.name

        # Check file extension
        if not file_path.endswith(".json"):
            return "Please upload a JSON intents file"

        # Load intents
        with open(file_path, "r") as f:
            intents_data = json.load(f)

        # Validate intents format
        for intent_name, intent_data in intents_data.items():
            if (
                not isinstance(intent_data, dict)
                or "patterns" not in intent_data
                or "responses" not in intent_data
            ):
                return f"Invalid intent format for '{intent_name}'"

        # Update chatbot intents
        chatbot.load_intents(intents_data)

        # Save intents
        chatbot.save_intents("intents.json")

        return f"Imported {len(intents_data)} intents from {file_path}"
    except Exception as e:
        return f"Error importing intents: {str(e)}"


# Function to get intent details
def get_intent_details(intent_name):
    if not intent_name or intent_name not in chatbot.intents:
        return "", ""

    patterns = "\n".join(chatbot.intents[intent_name]["patterns"])
    responses = "\n".join(chatbot.intents[intent_name]["responses"])

    return patterns, responses


# Create the Gradio interface with multiple tabs
with gr.Blocks(title="Neural Network Chatbot", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🤖 Neural Network Chatbot")
    gr.Markdown(
        """ This chatbot uses a neural network to understand and respond to your messages. 
        
        This chatbot application was developed by:

        | **Name** | **Student ID** | **Email** |
        |----------|----------------|-----------|
        | AARJEYAN SHRESTHA | C0927422 | C0927422@mylambton.ca |
        | PRAJWAL LUITEL | C0927658 | C0927658@mylambton.ca |
        | RAJAN GHIMIRE | C0924991 | C0924991@mylambton.ca |
        | RISHABH JHA | C0923563 | C0923563@mylambton.ca |
        | SUDIP CHAUDHARY | C0922310 | C0922310@mylambton.ca |


        - **Course**: Software Tools and Emerging Technologies for AI and ML
        - **Term**: 3rd
        - **Instructor**: [Peter Sigurdson](https://www.linkedin.com/in/petersigurdson/)

        """
    )

    with gr.Tabs():
        # Chat tab
        with gr.Tab("Chat"):
            with gr.Row():
                with gr.Column(scale=3):
                    chatbot_interface = gr.Chatbot(label="Conversation", height=400)

                    with gr.Row():
                        msg = gr.Textbox(
                            placeholder="Type your message here...",
                            label="Your message",
                            lines=2,
                            show_label=False,
                        )
                        send_btn = gr.Button("Send", variant="primary")

                    with gr.Accordion("Examples", open=False):
                        gr.Examples(
                            examples=[
                                "Hello!",
                                "How are you?",
                                "What can you help me with?",
                                "Thank you",
                                "Goodbye",
                            ],
                            inputs=msg,
                        )

                with gr.Column(scale=1):
                    gr.Markdown("### Analysis")
                    intent_label = gr.Label(label="Predicted Intent")
                    confidence_score = gr.Number(label="Confidence Score")

                    gr.Markdown("### Settings")
                    confidence_slider = gr.Slider(
                        label="Confidence Threshold",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        value=chatbot.confidence_threshold,
                    )
                    default_resp = gr.Textbox(
                        label="Default Response",
                        value=chatbot.default_response,
                        lines=2,
                    )
                    update_settings_btn = gr.Button("Update Settings")

            # Event handlers for chat
            def user_message(user_message, history):
                return "", history + [[user_message, None]]

            def bot_message(history):
                if history:
                    user_message = history[-1][0]
                    intent, response, confidence = chatbot.get_response(user_message)
                    history[-1][1] = response
                    return history, intent, confidence
                return history, "N/A", 0.0

            msg.submit(
                user_message,
                [msg, chatbot_interface],
                [msg, chatbot_interface],
                queue=False,
            ).then(
                bot_message,
                chatbot_interface,
                [chatbot_interface, intent_label, confidence_score],
            )

            send_btn.click(
                user_message,
                [msg, chatbot_interface],
                [msg, chatbot_interface],
                queue=False,
            ).then(
                bot_message,
                chatbot_interface,
                [chatbot_interface, intent_label, confidence_score],
            )

            update_settings_btn.click(
                update_settings,
                [confidence_slider, default_resp],
                gr.Textbox(label="Status"),
            )

        # Intents Management tab
        with gr.Tab("Intents Management"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Add New Intent")
                    new_intent_name = gr.Textbox(label="Intent Name")
                    new_patterns = gr.Textbox(label="Patterns (one per line)", lines=5)
                    new_responses = gr.Textbox(
                        label="Responses (one per line)", lines=5
                    )
                    add_intent_btn = gr.Button("Add Intent", variant="primary")
                    add_intent_status = gr.Textbox(label="Status")

                with gr.Column():
                    gr.Markdown("### Edit Intent")
                    edit_intent_dropdown = gr.Dropdown(
                        label="Select Intent to Edit",
                        choices=get_intent_list(),
                        interactive=True,
                    )
                    edit_patterns = gr.Textbox(label="Patterns (one per line)", lines=5)
                    edit_responses = gr.Textbox(
                        label="Responses (one per line)", lines=5
                    )

                    with gr.Row():
                        update_intent_btn = gr.Button("Update Intent")
                        delete_intent_btn = gr.Button("Delete Intent", variant="stop")

                    edit_intent_status = gr.Textbox(label="Status")

            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Import/Export Intents")
                    with gr.Row():
                        export_intents_btn = gr.Button("Export Intents")
                        import_intents_file = gr.File(
                            label="Import Intents (JSON file)"
                        )
                    import_export_status = gr.Textbox(label="Status")

                with gr.Column():
                    gr.Markdown("### Current Intents")
                    refresh_intents_btn = gr.Button("Refresh Intents List")
                    intents_list = gr.Markdown()

            # Event handlers for intents management
            add_intent_btn.click(
                add_intent,
                [new_intent_name, new_patterns, new_responses],
                add_intent_status,
            )

            # Update dropdown when adding/deleting intents
            add_intent_btn.click(get_intent_list, [], edit_intent_dropdown)

            edit_intent_dropdown.change(
                get_intent_details,
                edit_intent_dropdown,
                [edit_patterns, edit_responses],
            )

            update_intent_btn.click(
                edit_intent,
                [edit_intent_dropdown, edit_patterns, edit_responses],
                edit_intent_status,
            )

            delete_intent_btn.click(
                delete_intent, edit_intent_dropdown, edit_intent_status
            ).then(get_intent_list, [], edit_intent_dropdown)

            export_intents_btn.click(export_intents, [], import_export_status)

            import_intents_file.change(
                import_intents_from_file, import_intents_file, import_export_status
            ).then(get_intent_list, [], edit_intent_dropdown)

            refresh_intents_btn.click(list_intents, [], intents_list)

        # Training tab
        with gr.Tab("Training"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Train Model")
                    epochs_input = gr.Number(
                        label="Epochs", value=500, minimum=100, maximum=5000, step=100
                    )
                    learning_rate_input = gr.Number(
                        label="Learning Rate",
                        value=0.01,
                        minimum=0.0001,
                        maximum=0.1,
                        step=0.001,
                    )
                    hidden_layers_input = gr.Textbox(
                        label="Hidden Layers (comma-separated)", value="32, 16"
                    )
                    dropout_rate_input = gr.Number(
                        label="Dropout Rate",
                        value=0.2,
                        minimum=0.0,
                        maximum=0.5,
                        step=0.05,
                    )
                    train_btn = gr.Button("Train Model", variant="primary")

                with gr.Column():
                    training_status = gr.Textbox(label="Training Status", lines=6)
                    training_plot = gr.Image(label="Training History")

            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Model Management")
                    save_model_btn = gr.Button("Save Current Model")
                    load_model_file = gr.File(label="Load Model (JSON file)")
                    model_status = gr.Textbox(label="Status")

            # Event handlers for training
            train_btn.click(
                train_model,
                [
                    epochs_input,
                    learning_rate_input,
                    hidden_layers_input,
                    dropout_rate_input,
                ],
                [training_status, training_plot],
            )

            save_model_btn.click(save_model, [], model_status)

            load_model_file.change(load_model_from_file, load_model_file, model_status)

        # About tab
        with gr.Tab("About"):
            gr.Markdown(
                """
            ## Neural Network Chatbot
            
            This chatbot uses a neural network to understand and respond to user messages. 
            The model is trained on a set of intents, each with patterns and responses.
            
            ### Features:
            
            - **Neural Network Backend**: The chatbot uses a fully-connected neural network with configurable layers.
            - **Intent Recognition**: Recognizes user intents based on trained patterns.
            - **Customizable Responses**: Each intent has multiple possible responses for variety.
            - **Training Interface**: Train the model directly from the web interface.
            - **Intent Management**: Add, edit, delete, import, and export intents.
            - **Model Management**: Save and load models for future use.
            
            ### How to Use:
            
            1. **Chat Tab**: Interact with the chatbot.
            2. **Intents Management Tab**: Manage the chatbot's knowledge.
            3. **Training Tab**: Train the neural network model.
            4. **About Tab**: Learn about the chatbot and its features.
            
            ### Technical Details:
            
            - Built with Python, NumPy, and Gradio.
            - Uses a bag-of-words approach for text representation.
            - Neural network with configurable hidden layers and activation functions.
            - Cross-entropy loss for multi-class classification.
            
            Created for deployment on Hugging Face Spaces.
            """
            )

# Call initialize again after defining the UI
# to make sure dropdown is populated
chat_intents = get_intent_list()

# Launch the app
if __name__ == "__main__":
    demo.launch()