Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -25,6 +25,7 @@ st.header("Welcome!. Today, What company's sustainability story is inspiring you
|
|
25 |
|
26 |
myurl = st.text_input("Give the URL to find a sustainability or annual report", "https://www.wipro.com/content/dam/nexus/en/sustainability/sustainability_reports/wipro-sustainability-report-fy-2021-22.pdf")
|
27 |
|
|
|
28 |
yourquestion = st.text_input('Ask your question on best practices', 'What is Wipro plans for Biodiversity in 2024?')
|
29 |
st.write('Your input is ', yourquestion)
|
30 |
|
@@ -40,33 +41,35 @@ llmgpt3 = AzureOpenAI( deployment_name="testdavanci", model_name="text-davi
|
|
40 |
#llmchatgpt = AzureOpenAI( deployment_name="esujnand", model_name="gpt-35-turbo" )
|
41 |
|
42 |
|
43 |
-
|
44 |
-
index = None
|
45 |
-
loader1 = PyPDFLoader(myurl)
|
46 |
-
langchainembeddings = OpenAIEmbeddings(deployment="textembedding", chunk_size=1)
|
47 |
-
|
48 |
-
index = VectorstoreIndexCreator(
|
49 |
-
# split the documents into chunks
|
50 |
-
text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0),
|
51 |
-
# select which embeddings we want to use
|
52 |
-
embedding=langchainembeddings,
|
53 |
-
# use Chroma as the vectorestore to index and search embeddings
|
54 |
-
vectorstore_cls=Chroma
|
55 |
-
).from_loaders([loader1])
|
56 |
-
|
57 |
-
st.write("loaded")
|
58 |
|
|
|
59 |
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
25 |
|
26 |
myurl = st.text_input("Give the URL to find a sustainability or annual report", "https://www.wipro.com/content/dam/nexus/en/sustainability/sustainability_reports/wipro-sustainability-report-fy-2021-22.pdf")
|
27 |
|
28 |
+
|
29 |
yourquestion = st.text_input('Ask your question on best practices', 'What is Wipro plans for Biodiversity in 2024?')
|
30 |
st.write('Your input is ', yourquestion)
|
31 |
|
|
|
41 |
#llmchatgpt = AzureOpenAI( deployment_name="esujnand", model_name="gpt-35-turbo" )
|
42 |
|
43 |
|
44 |
+
with st.form("my_form"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
myurl = st.text_input("Give the URL to find a sustainability or annual report", "https://www.wipro.com/content/dam/nexus/en/sustainability/sustainability_reports/wipro-sustainability-report-fy-2021-22.pdf")
|
47 |
|
48 |
+
yourquestion = st.text_input('Ask your question on best practices', 'What is Wipro plans for Biodiversity in 2024?')
|
49 |
+
st.write('Your input is ', yourquestion)
|
50 |
|
51 |
+
# Every form must have a submit button.
|
52 |
+
submitted = st.form_submit_button("Ask question")
|
53 |
+
if submitted:
|
54 |
+
if myurl:
|
55 |
+
index = None
|
56 |
+
loader1 = PyPDFLoader(myurl)
|
57 |
+
langchainembeddings = OpenAIEmbeddings(deployment="textembedding", chunk_size=1)
|
58 |
|
59 |
+
index = VectorstoreIndexCreator(
|
60 |
+
# split the documents into chunks
|
61 |
+
text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0),
|
62 |
+
# select which embeddings we want to use
|
63 |
+
embedding=langchainembeddings,
|
64 |
+
# use Chroma as the vectorestore to index and search embeddings
|
65 |
+
vectorstore_cls=Chroma
|
66 |
+
).from_loaders([loader1])
|
67 |
+
|
68 |
+
st.write("loaded")
|
69 |
|
|
|
70 |
|
|
|
|
|
71 |
|
72 |
+
if yourquestion:
|
73 |
+
answer = index.query(llm=llmgpt3, question=yourquestion, chain_type="map_reduce")
|
74 |
+
st.write(answer)
|
75 |
|
|