RICHARDMENSAH's picture
Create app.py
f352d9e
raw
history blame
1.87 kB
import streamlit as st
import transformers
import torch
# Load the model and tokenizer
model = transformers.AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_sentiment_model")
tokenizer = transformers.AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_sentiment_tokenizer")
# Define the function for sentiment analysis
@st.cache_resource
def predict_sentiment(text):
# Tokenize the input text
inputs = tokenizer(text, return_tensors="pt")
# Pass the tokenized input through the model
outputs = model(**inputs)
# Get the predicted class and return the corresponding sentiment
predicted_class = torch.argmax(outputs.logits, dim=-1).item()
if predicted_class == 0:
return "Negative"
elif predicted_class == 1:
return "Neutral"
else:
return "Positive"
# Setting the page configurations
st.set_page_config(
page_title="Sentiment Analysis App",
page_icon=":smile:",
layout="wide",
initial_sidebar_state="auto",
)
# Add description and title
st.write("""
# How Positive or Negative is your Text?
Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment!
""")
# Add image
image = st.image("https://i0.wp.com/thedatascientist.com/wp-content/uploads/2018/10/sentiment-analysis.png", width=400)
# Get user input
text = st.text_input("Enter some text here:")
# Define the CSS style for the app
st.markdown(
"""
<style>
body {
background-color: #f5f5f5;
}
h1 {
color: #4e79a7;
}
</style>
""",
unsafe_allow_html=True
)
# Show sentiment output
if text:
sentiment = predict_sentiment(text)
if sentiment == "Positive":
st.success(f"The sentiment is {sentiment}!")
elif sentiment == "Negative":
st.error(f"The sentiment is {sentiment}.")
else:
st.warning(f"The sentiment is {sentiment}.")