Spaces:
Runtime error
Runtime error
RICHARDMENSAH
commited on
Commit
•
cbf2263
1
Parent(s):
959fe98
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from PIL import Image
|
7 |
+
import time
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import qrcode
|
10 |
+
from io import BytesIO
|
11 |
+
import csv
|
12 |
+
|
13 |
+
# Load the trained models and transformers
|
14 |
+
num_imputer = joblib.load('numerical_imputer.joblib')
|
15 |
+
cat_imputer = joblib.load('cat_imputer.joblib')
|
16 |
+
encoder = joblib.load('encoder.joblib')
|
17 |
+
scaler = joblib.load('scaler.joblib')
|
18 |
+
model1 = joblib.load('lr_model_vif_smote.joblib')
|
19 |
+
model2 = joblib.load('gb_model_vif_smote.joblib')
|
20 |
+
|
21 |
+
|
22 |
+
def preprocess_input(input_data):
|
23 |
+
input_df = pd.DataFrame(input_data, index=[0])
|
24 |
+
|
25 |
+
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
26 |
+
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
27 |
+
|
28 |
+
input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
|
29 |
+
input_df_imputed_num = num_imputer.transform(input_df[num_columns])
|
30 |
+
|
31 |
+
input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(),
|
32 |
+
columns=encoder.get_feature_names_out(cat_columns))
|
33 |
+
|
34 |
+
input_df_scaled = scaler.transform(input_df_imputed_num)
|
35 |
+
input_scaled_df = pd.DataFrame(input_df_scaled, columns=num_columns)
|
36 |
+
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
|
37 |
+
final_df = final_df.reindex(columns=original_feature_names, fill_value=0)
|
38 |
+
|
39 |
+
return final_df
|
40 |
+
|
41 |
+
original_feature_names = ['MONTANT', 'FREQUENCE_RECH', 'REVENUE', 'ARPU_SEGMENT', 'FREQUENCE',
|
42 |
+
'DATA_VOLUME', 'ON_NET', 'ORANGE', 'TIGO', 'ZONE1', 'ZONE2', 'REGULARITY', 'FREQ_TOP_PACK',
|
43 |
+
'REGION_DAKAR', 'REGION_DIOURBEL', 'REGION_FATICK', 'REGION_KAFFRINE', 'REGION_KAOLACK',
|
44 |
+
'REGION_KEDOUGOU', 'REGION_KOLDA', 'REGION_LOUGA', 'REGION_MATAM', 'REGION_SAINT-LOUIS',
|
45 |
+
'REGION_SEDHIOU', 'REGION_TAMBACOUNDA', 'REGION_THIES', 'REGION_ZIGUINCHOR',
|
46 |
+
'TENURE_Long-term', 'TENURE_Medium-term', 'TENURE_Mid-term', 'TENURE_Short-term',
|
47 |
+
'TENURE_Very short-term', 'TOP_PACK_data', 'TOP_PACK_international', 'TOP_PACK_messaging',
|
48 |
+
'TOP_PACK_other_services', 'TOP_PACK_social_media', 'TOP_PACK_value_added_services',
|
49 |
+
'TOP_PACK_voice']
|
50 |
+
|
51 |
+
# Set up the Streamlit app
|
52 |
+
st.set_page_config(layout="wide")
|
53 |
+
|
54 |
+
# Main page - Churn Prediction
|
55 |
+
st.title('📞 EXPRESSO TELECOM CUSTOMER CHURN PREDICTION APP 📞')
|
56 |
+
|
57 |
+
# Main page - Churn Prediction
|
58 |
+
st.image("banner.png", use_column_width=True)
|
59 |
+
st.markdown("This app predicts whether a customer will leave your company ❌ or not 🎉. Enter the details of the customer on the left sidebar to see the result")
|
60 |
+
|
61 |
+
|
62 |
+
# How to use
|
63 |
+
st.title('How to Use')
|
64 |
+
st.markdown('1. Select your model of choice on the left sidebar.')
|
65 |
+
st.markdown('2. Adjust the input parameters based on customer details')
|
66 |
+
st.markdown('3. Click the "Predict" button to initiate the prediction.')
|
67 |
+
st.markdown('4. The app will simulate a prediction process with a progress bar.')
|
68 |
+
st.markdown('5. Once the prediction is complete, the results will be displayed below.')
|
69 |
+
|
70 |
+
import csv
|
71 |
+
import streamlit as st
|
72 |
+
|
73 |
+
# Add context text
|
74 |
+
st.sidebar.markdown('**Welcome!**')
|
75 |
+
st.sidebar.markdown('This is a work in progress, and we would love to hear your suggestions on how to improve the user experience. Please feel free to provide your feedback in the suggestion box below.')
|
76 |
+
|
77 |
+
# Create the sidebar with a text input field for suggestions
|
78 |
+
correction_text = st.sidebar.text_input('Enter your suggestion')
|
79 |
+
|
80 |
+
# Button to submit the suggestion
|
81 |
+
if st.sidebar.button('Submit'):
|
82 |
+
# Perform action on suggestion submission (e.g., save to a CSV file)
|
83 |
+
with open('suggestions.csv', 'a', newline='') as file:
|
84 |
+
writer = csv.writer(file)
|
85 |
+
writer.writerow([correction_text])
|
86 |
+
st.sidebar.info('Suggestion submitted successfully')
|
87 |
+
|
88 |
+
# Define a dictionary of models with their names, actual models, and types
|
89 |
+
models = {
|
90 |
+
'Logistic Regression': {'model': model1, 'type': 'logistic_regression'},
|
91 |
+
'Gradient Boosting': {'model': model2, 'type': 'gradient_boosting'}
|
92 |
+
}
|
93 |
+
|
94 |
+
# Allow the user to select a model from the sidebar
|
95 |
+
# Allow the user to select a model from the sidebar
|
96 |
+
st.sidebar.title('Select Model')
|
97 |
+
model_name = st.sidebar.selectbox('Choose a model', list(models.keys()))
|
98 |
+
|
99 |
+
# Retrieve the selected model and its type from the dictionary
|
100 |
+
model = models[model_name]['model']
|
101 |
+
model_type = models[model_name]['type']
|
102 |
+
|
103 |
+
|
104 |
+
# Collect input from the user
|
105 |
+
st.sidebar.title('Enter Customer Details')
|
106 |
+
input_features = {
|
107 |
+
'MONTANT': st.sidebar.number_input('Top-up Amount (MONTANT)'),
|
108 |
+
'FREQUENCE_RECH': st.sidebar.number_input('Number of Times the Customer Refilled (FREQUENCE_RECH)'),
|
109 |
+
'REVENUE': st.sidebar.number_input('Monthly income of the client (REVENUE)'),
|
110 |
+
'ARPU_SEGMENT': st.sidebar.number_input('Income over 90 days / 3 (ARPU_SEGMENT)'),
|
111 |
+
'FREQUENCE': st.sidebar.number_input('Number of times the client has made an income (FREQUENCE)'),
|
112 |
+
'DATA_VOLUME': st.sidebar.number_input('Number of Connections (DATA_VOLUME)'),
|
113 |
+
'ON_NET': st.sidebar.number_input('Inter Expresso Call (ON_NET)'),
|
114 |
+
'ORANGE': st.sidebar.number_input('Call to Orange (ORANGE)'),
|
115 |
+
'TIGO': st.sidebar.number_input('Call to Tigo (TIGO)'),
|
116 |
+
'ZONE1': st.sidebar.number_input('Call to Zone 1 (ZONE1)'),
|
117 |
+
'ZONE2': st.sidebar.number_input('Call to Zone 2 (ZONE2)'),
|
118 |
+
'REGULARITY': st.sidebar.number_input('Number of Times the Client is Active for 90 Days (REGULARITY)'),
|
119 |
+
'FREQ_TOP_PACK': st.sidebar.number_input('Number of Times the Client has Activated the Top Packs (FREQ_TOP_PACK)'),
|
120 |
+
'REGION': st.sidebar.selectbox('Location of Each Client (REGION)', ['SAINT-LOUIS', 'THIES', 'LOUGA', 'MATAM', 'FATICK', 'KAOLACK',
|
121 |
+
'DIOURBEL', 'TAMBACOUNDA', 'ZIGUINCHOR', 'KOLDA', 'KAFFRINE', 'SEDHIOU',
|
122 |
+
'KEDOUGOU']),
|
123 |
+
'TENURE': st.sidebar.selectbox('Duration in the Network (TENURE)', ['Short-term', 'Mid-term', 'Medium-term', 'Very short-term']),
|
124 |
+
'TOP_PACK': st.sidebar.selectbox('Most Active Pack (TOP_PACK)', ['data', 'international', 'messaging', 'social_media',
|
125 |
+
'value_added_services', 'voice'])
|
126 |
+
}
|
127 |
+
|
128 |
+
# Input validation
|
129 |
+
valid_input = True
|
130 |
+
error_messages = []
|
131 |
+
|
132 |
+
# Validate numeric inputs
|
133 |
+
numeric_ranges = {
|
134 |
+
'MONTANT': [0, 1000000],
|
135 |
+
'FREQUENCE_RECH': [0, 100],
|
136 |
+
'REVENUE': [0, 1000000],
|
137 |
+
'ARPU_SEGMENT': [0, 100000],
|
138 |
+
'FREQUENCE': [0, 100],
|
139 |
+
'DATA_VOLUME': [0, 100000],
|
140 |
+
'ON_NET': [0, 100000],
|
141 |
+
'ORANGE': [0, 100000],
|
142 |
+
'TIGO': [0, 100000],
|
143 |
+
'ZONE1': [0, 100000],
|
144 |
+
'ZONE2': [0, 100000],
|
145 |
+
'REGULARITY': [0, 100],
|
146 |
+
'FREQ_TOP_PACK': [0, 100]
|
147 |
+
}
|
148 |
+
|
149 |
+
for feature, value in input_features.items():
|
150 |
+
range_min, range_max = numeric_ranges.get(feature, [None, None])
|
151 |
+
if range_min is not None and range_max is not None:
|
152 |
+
if not range_min <= value <= range_max:
|
153 |
+
valid_input = False
|
154 |
+
error_messages.append(f"{feature} should be between {range_min} and {range_max}.")
|
155 |
+
|
156 |
+
#Churn Prediction
|
157 |
+
|
158 |
+
def predict_churn(input_data, model):
|
159 |
+
# Preprocess the input data
|
160 |
+
preprocessed_data = preprocess_input(input_data)
|
161 |
+
|
162 |
+
# Calculate churn probabilities using the model
|
163 |
+
probabilities = model.predict_proba(preprocessed_data)
|
164 |
+
|
165 |
+
# Determine churn labels based on the model type
|
166 |
+
if model_type == "logistic_regression":
|
167 |
+
churn_labels = ["No Churn", "Churn"]
|
168 |
+
elif model_type == "gradient_boosting":
|
169 |
+
churn_labels = ["Churn", "No Churn"]
|
170 |
+
# Extract churn probability for the first sample
|
171 |
+
churn_probability = probabilities[0]
|
172 |
+
|
173 |
+
# Create a dictionary mapping churn labels to their indices
|
174 |
+
churn_indices = {label: idx for idx, label in enumerate(churn_labels)}
|
175 |
+
|
176 |
+
# Determine the index with the highest churn probability
|
177 |
+
churn_index = np.argmax(churn_probability)
|
178 |
+
|
179 |
+
# Return churn labels, churn probabilities, churn indices, and churn index
|
180 |
+
return churn_labels, churn_probability, churn_indices, churn_index
|
181 |
+
|
182 |
+
|
183 |
+
# Predict churn based on user input
|
184 |
+
if st.sidebar.button('Predict Churn'):
|
185 |
+
try:
|
186 |
+
with st.spinner("Predicting..."):
|
187 |
+
# Simulate a long-running process
|
188 |
+
progress_bar = st.progress(0)
|
189 |
+
step = 20 # A big step will reduce the execution time
|
190 |
+
for i in range(0, 100, step):
|
191 |
+
time.sleep(0.1)
|
192 |
+
progress_bar.progress(i + step)
|
193 |
+
|
194 |
+
#churn_labels, churn_probability = predict_churn(input_features, model) # Pass model1 or model2 based on the selected model
|
195 |
+
churn_labels, churn_probability, churn_indices, churn_index = predict_churn(input_features, model)
|
196 |
+
|
197 |
+
st.subheader('Main Results')
|
198 |
+
|
199 |
+
col1, col2 = st.columns(2)
|
200 |
+
|
201 |
+
if churn_labels[churn_index] == "Churn":
|
202 |
+
churn_prob = churn_probability[churn_index]
|
203 |
+
with col1:
|
204 |
+
st.error(f"Beware!!! This customer is likely to churn with a probability of {churn_prob * 100:.2f}% 😢")
|
205 |
+
resized_churn_image = Image.open('Churn.png')
|
206 |
+
resized_churn_image = resized_churn_image.resize((350, 300)) # Adjust the width and height as desired
|
207 |
+
st.image(resized_churn_image)
|
208 |
+
# Add suggestions for retaining churned customers in the 'Churn' group
|
209 |
+
with col2:
|
210 |
+
st.info("Suggestions for retaining churned customers in this customer group:\n"
|
211 |
+
"- Offer personalized discounts or promotions\n"
|
212 |
+
"- Provide exceptional customer service\n"
|
213 |
+
"- Introduce loyalty programs\n"
|
214 |
+
"- Send targeted re-engagement emails\n"
|
215 |
+
"- Provide a dedicated account manager\n"
|
216 |
+
"- Offer extended trial periods\n"
|
217 |
+
"- Conduct exit surveys to understand reasons for churn\n"
|
218 |
+
"- Implement a customer win-back campaign\n"
|
219 |
+
"- Provide incentives for referrals\n"
|
220 |
+
"- Improve product or service offerings based on customer feedback")
|
221 |
+
else:
|
222 |
+
#churn_index = churn_indices["No Churn"]
|
223 |
+
churn_prob = churn_probability[churn_index]
|
224 |
+
with col1:
|
225 |
+
st.success(f"This customer is not likely to churn with a probability of {churn_prob * 100:.2f}% 😀")
|
226 |
+
resized_not_churn_image = Image.open('NotChurn.jpg')
|
227 |
+
resized_not_churn_image = resized_not_churn_image.resize((350, 300)) # Adjust the width and height as desired
|
228 |
+
st.image(resized_not_churn_image)
|
229 |
+
# Add suggestions for retaining churned customers in the 'Churn' group
|
230 |
+
with col2:
|
231 |
+
st.info("Suggestions for retaining non-churned customers in this customer group:\n"
|
232 |
+
"- Provide personalized product recommendations\n"
|
233 |
+
"- Offer exclusive features or upgrades\n"
|
234 |
+
"- Implement proactive customer support\n"
|
235 |
+
"- Conduct customer satisfaction surveys\n"
|
236 |
+
"- Recognize and reward loyal customers\n"
|
237 |
+
"- Organize customer appreciation events\n"
|
238 |
+
"- Offer early access to new features or products\n"
|
239 |
+
"- Provide educational resources or tutorials\n"
|
240 |
+
"- Implement a customer loyalty program\n"
|
241 |
+
"- Offer flexible billing or pricing options")
|
242 |
+
|
243 |
+
st.subheader('Churn Probability')
|
244 |
+
|
245 |
+
# Create a donut chart to display probabilities
|
246 |
+
fig = go.Figure(data=[go.Pie(
|
247 |
+
labels=churn_labels,
|
248 |
+
values=churn_probability,
|
249 |
+
hole=0.5,
|
250 |
+
textinfo='label+percent',
|
251 |
+
marker=dict(colors=['#FFA07A', '#6495ED', '#FFD700', '#32CD32', '#FF69B4', '#8B008B']))])
|
252 |
+
|
253 |
+
fig.update_traces(
|
254 |
+
hoverinfo='label+percent',
|
255 |
+
textfont_size=12,
|
256 |
+
textposition='inside',
|
257 |
+
texttemplate='%{label}: %{percent:.2f}%'
|
258 |
+
)
|
259 |
+
|
260 |
+
fig.update_layout(
|
261 |
+
title='Churn Probability',
|
262 |
+
title_x=0.5,
|
263 |
+
showlegend=False,
|
264 |
+
width=500,
|
265 |
+
height=500
|
266 |
+
)
|
267 |
+
|
268 |
+
st.plotly_chart(fig, use_container_width=True)
|
269 |
+
|
270 |
+
# Calculate the average churn rate (replace with your actual value)
|
271 |
+
|
272 |
+
st.subheader('Customer Churn Probability Comparison')
|
273 |
+
|
274 |
+
average_churn_rate = 19
|
275 |
+
|
276 |
+
# Convert the overall churn rate to churn probability
|
277 |
+
main_data_churn_probability = average_churn_rate / 100
|
278 |
+
|
279 |
+
# Retrieve the predicted churn probability for the selected customer
|
280 |
+
predicted_churn_prob = churn_probability[churn_index]
|
281 |
+
|
282 |
+
if churn_labels[churn_index] == "Churn":
|
283 |
+
churn_prob = churn_probability[churn_index]
|
284 |
+
# Create a bar chart comparing the churn probability with the average churn rate
|
285 |
+
labels = ['Churn Probability', 'Average Churn Probability']
|
286 |
+
values = [predicted_churn_prob, main_data_churn_probability]
|
287 |
+
|
288 |
+
fig = go.Figure(data=[go.Bar(x=labels, y=values)])
|
289 |
+
fig.update_layout(
|
290 |
+
xaxis_title='Churn Probability',
|
291 |
+
yaxis_title='Probability',
|
292 |
+
title='Comparison with Average Churn Rate',
|
293 |
+
yaxis=dict(range=[0, 1]) # Set the y-axis limits between 0 and 1
|
294 |
+
)
|
295 |
+
|
296 |
+
# Add explanations
|
297 |
+
if predicted_churn_prob > main_data_churn_probability:
|
298 |
+
churn_comparison = "higher"
|
299 |
+
elif predicted_churn_prob < main_data_churn_probability:
|
300 |
+
churn_comparison = "lower"
|
301 |
+
else:
|
302 |
+
churn_comparison = "equal"
|
303 |
+
|
304 |
+
|
305 |
+
explanation = f"This bar chart compares the churn probability of the selected customer " \
|
306 |
+
f"with the average churn rate of all customers. It provides insights into how the " \
|
307 |
+
f"individual customer's churn likelihood ({predicted_churn_prob:.2f}) compares to the " \
|
308 |
+
f"overall trend. The 'Churn Probability' represents the likelihood of churn " \
|
309 |
+
f"for the selected customer, while the 'Average Churn Rate' represents the average " \
|
310 |
+
f"churn rate across all customers ({main_data_churn_probability:.2f}).\n\n" \
|
311 |
+
f"The customer's churn rate is {churn_comparison} than the average churn rate."
|
312 |
+
|
313 |
+
st.plotly_chart(fig)
|
314 |
+
st.write(explanation)
|
315 |
+
else:
|
316 |
+
# Create a bar chart comparing the no-churn probability with the average churn rate
|
317 |
+
labels = ['No-Churn Probability', 'Average Churn Probability']
|
318 |
+
values = [1 - predicted_churn_prob, main_data_churn_probability]
|
319 |
+
|
320 |
+
fig = go.Figure(data=[go.Bar(x=labels, y=values)])
|
321 |
+
fig.update_layout(
|
322 |
+
xaxis_title='Churn Probability',
|
323 |
+
yaxis_title='Probability',
|
324 |
+
title='Comparison with Average Churn Rate',
|
325 |
+
yaxis=dict(range=[0, 1]) # Set the y-axis limits between 0 and 1
|
326 |
+
)
|
327 |
+
|
328 |
+
explanation = f"This bar chart compares the churn probability of the selected customer " \
|
329 |
+
f"with the average churn rate of all customers. It provides insights into how the " \
|
330 |
+
f"individual customer's likelihood of churn ({1 - predicted_churn_prob:.2f}) compares to the " \
|
331 |
+
f"overall trend. A lower churn probability indicates that the customer is less likely to churn. " \
|
332 |
+
f"The chart shows that the churn probability ({1 - predicted_churn_prob:.2f}) is lower than the " \
|
333 |
+
f"average churn probability ({main_data_churn_probability:.2f}), suggesting that the customer " \
|
334 |
+
f"is predicted to stay with the company. Keep in mind that the prediction is based on the " \
|
335 |
+
f"available data and the applied model, and there might still be some uncertainty in the result."
|
336 |
+
|
337 |
+
|
338 |
+
st.plotly_chart(fig)
|
339 |
+
st.write(explanation)
|
340 |
+
|
341 |
+
# Visualize Feature Importance
|
342 |
+
|
343 |
+
st.subheader('Feature Importance')
|
344 |
+
if hasattr(model, 'coef_'): # Check if the model has attribute 'coef_' to determine importance type
|
345 |
+
feature_importances = model.coef_[0]
|
346 |
+
importance_type = 'Coef'
|
347 |
+
elif hasattr(model, 'feature_importances_'):
|
348 |
+
feature_importances = model.feature_importances_
|
349 |
+
importance_type = 'Importance'
|
350 |
+
else:
|
351 |
+
st.write('Feature importance is not available for this model.')
|
352 |
+
|
353 |
+
# If importance information is available, create a DataFrame and sort it
|
354 |
+
if hasattr(model, 'coef_') or hasattr(model, 'feature_importances_'):
|
355 |
+
importance_df = pd.DataFrame({'Feature': original_feature_names, importance_type: feature_importances})
|
356 |
+
importance_df = importance_df.sort_values(importance_type, ascending=False)
|
357 |
+
|
358 |
+
# Determine color for each bar based on positive or negative importance
|
359 |
+
colors = ['green' if importance > 0 else 'red' for importance in importance_df[importance_type]]
|
360 |
+
|
361 |
+
# Create a horizontal bar chart using Plotly
|
362 |
+
fig = go.Figure(go.Bar(
|
363 |
+
x=importance_df[importance_type],
|
364 |
+
y=importance_df['Feature'],
|
365 |
+
orientation='h',
|
366 |
+
marker=dict(color=colors),
|
367 |
+
text=importance_df[importance_type].apply(lambda x: f'{x:.2f}'),
|
368 |
+
textposition='inside'))
|
369 |
+
|
370 |
+
# Configure the layout of the bar chart
|
371 |
+
fig.update_layout(
|
372 |
+
title='Feature Importance',
|
373 |
+
xaxis_title='Importance',
|
374 |
+
yaxis_title='Feature',
|
375 |
+
bargap=0.1,
|
376 |
+
width=600,
|
377 |
+
height=800)
|
378 |
+
|
379 |
+
# Display the bar chart using Plotly chart in Streamlit
|
380 |
+
st.plotly_chart(fig)
|
381 |
+
|
382 |
+
# Explanation of feature importance
|
383 |
+
importance_explanation = f"The feature importance plot shows the relative importance of each feature " \
|
384 |
+
f"for predicting churn. The importance is calculated based on the " \
|
385 |
+
f"{importance_type} value of each feature in the model. " \
|
386 |
+
f"A higher {importance_type} value indicates a stronger influence " \
|
387 |
+
f"of the corresponding feature on the prediction of churn.\n\n" \
|
388 |
+
f"For logistic regression, positive {importance_type} values indicate " \
|
389 |
+
f"features that positively contribute to predicting churn, " \
|
390 |
+
f"while negative {importance_type} values indicate features that " \
|
391 |
+
f"negatively contribute to predicting churn.\n\n" \
|
392 |
+
f"For gradient boosting, higher {importance_type} values " \
|
393 |
+
f"indicate features that have a greater importance in predicting churn.\n\n" \
|
394 |
+
f"Please note that the feature importance values may vary depending on the model " \
|
395 |
+
f"and the data used for training."
|
396 |
+
|
397 |
+
|
398 |
+
st.write(importance_explanation)
|
399 |
+
|
400 |
+
|
401 |
+
except Exception as e:
|
402 |
+
st.error(f"An error occurred: {str(e)}")
|