Spaces:
Running
on
Zero
Running
on
Zero
import cv2, os | |
import torch | |
import random | |
import numpy as np | |
import spaces | |
import PIL | |
from PIL import Image | |
from typing import Tuple | |
import diffusers | |
from diffusers.utils import load_image | |
from diffusers import ( | |
AutoencoderKL, | |
UNet2DConditionModel, | |
UniPCMultistepScheduler, | |
) | |
from huggingface_hub import hf_hub_download | |
from insightface.app import FaceAnalysis | |
from pipeline_controlnet_xs_sd_xl_instantid import StableDiffusionXLInstantIDXSPipeline, UNetControlNetXSModel | |
from utils.controlnet_xs import ControlNetXSAdapter | |
# from controlnet_aux import OpenposeDetector | |
import gradio as gr | |
import torch.nn.functional as F | |
from torchvision.transforms import Compose | |
# global variable | |
MAX_SEED = np.iinfo(np.int32).max | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
weight_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
base_model = 'frankjoshua/realvisxlV40_v40Bakedvae' | |
vae_path = 'madebyollin/sdxl-vae-fp16-fix' | |
ckpt = 'RED-AIGC/InstantID-XS' | |
image_proj_path = os.path.join(ckpt, "image_proj.bin") | |
cnxs_path = os.path.join(ckpt, "controlnetxs.bin") | |
cross_attn_path = os.path.join(ckpt, "cross_attn.bin") | |
# Load face encoder | |
app = FaceAnalysis( | |
name="antelopev2", | |
root="./", | |
providers=["CPUExecutionProvider"], | |
) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
def get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=torch.float16): | |
unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet").to(device, dtype=weight_dtype) | |
controlnet = ControlNetXSAdapter.from_unet(unet, size_ratio=size_ratio, learn_time_embedding=True) | |
state_dict = torch.load(cnxs_path, map_location="cpu", weights_only=True) | |
ctrl_state_dict = {} | |
for key, value in state_dict.items(): | |
if 'attn2.processor' not in key: | |
if 'ctrl_' in key and 'ctrl_to_base' not in key: | |
key = key.replace('ctrl_', '') | |
if 'up_blocks' in key: | |
key = key.replace('up_blocks', 'up_connections') | |
ctrl_state_dict[key] = value | |
controlnet.load_state_dict(ctrl_state_dict, strict=True) | |
controlnet.to(device, dtype=weight_dtype) | |
ControlNetXS = UNetControlNetXSModel.from_unet(unet, controlnet).to(device, dtype=weight_dtype) | |
return ControlNetXS | |
ControlNetXS = get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=weight_dtype) | |
vae = AutoencoderKL.from_pretrained(vae_path) | |
pipe = StableDiffusionXLInstantIDXSPipeline.from_pretrained( | |
pretrained_model_name_or_path, | |
vae=vae, | |
unet=ControlNetXS, | |
controlnet=None, | |
torch_dtype=weight_dtype, | |
) | |
pipe.cuda(device=device, dtype=weight_dtype, use_xformers=True) | |
pipe.load_ip_adapter(image_proj_path, cross_attn_path) | |
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.unet.config.ctrl_learn_time_embedding = True | |
pipe = pipe.to(args.device) | |
def toggle_lcm_ui(value): | |
if value: | |
return ( | |
gr.update(minimum=0, maximum=100, step=1, value=5), | |
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5), | |
) | |
else: | |
return ( | |
gr.update(minimum=5, maximum=100, step=1, value=30), | |
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5), | |
) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def remove_tips(): | |
return gr.update(visible=False) | |
def get_example(): | |
case = [ | |
[ | |
"./examples/1.jpg", | |
None, | |
"a woman,(looking at the viewer), portrait, daily wear, 8K texture, realistic, symmetrical hyperdetailed texture, masterpiece, enhanced details, (eye highlight:2), perfect composition, natural lighting, best quality, authentic, natural posture", | |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
], | |
[ | |
"./examples/1.jpeg", | |
"./examples/poses/pose1.jpg", | |
"a woman,(looking at the viewer), portrait, daily wear, 8K texture, realistic, symmetrical hyperdetailed texture, masterpiece, enhanced details, (eye highlight:2), perfect composition, natural lighting, best quality, authentic, natural posture", | |
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
], | |
] | |
return case | |
def run_for_examples(face_file, pose_file, prompt, style, negative_prompt): | |
return generate_image( | |
face_file, | |
pose_file, | |
prompt, | |
negative_prompt, | |
20, # num_steps | |
0.8, # identitynet_strength_ratio | |
0.8, # adapter_strength_ratio | |
0.8, # pose_strength | |
5.0, # guidance_scale | |
42, # seed | |
) | |
def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
def resize_img( | |
input_image, | |
max_side=1280, | |
min_side=1024, | |
size=None, | |
pad_to_max_side=False, | |
mode=PIL.Image.BILINEAR, | |
base_pixel_number=64, | |
): | |
w, h = input_image.size | |
if size is not None: | |
w_resize_new, h_resize_new = size | |
else: | |
ratio = min_side / min(h, w) | |
w, h = round(ratio * w), round(ratio * h) | |
ratio = max_side / max(h, w) | |
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) | |
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
if pad_to_max_side: | |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
offset_x = (max_side - w_resize_new) // 2 | |
offset_y = (max_side - h_resize_new) // 2 | |
res[ | |
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new | |
] = np.array(input_image) | |
input_image = Image.fromarray(res) | |
return input_image | |
def generate_image( | |
face_image_path, | |
pose_image_path, | |
prompt, | |
negative_prompt, | |
num_steps, | |
controlnet_conditioning_scale, | |
adapter_strength_ratio, | |
guidance_scale, | |
seed, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if face_image_path is None: | |
raise gr.Error( | |
f"Cannot find any input face image! Please upload the face image" | |
) | |
if prompt is None: | |
prompt = "a person" | |
# apply the style template | |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
face_image = load_image(face_image_path) | |
face_image = resize_img(face_image, max_side=1024) | |
face_image_cv2 = convert_from_image_to_cv2(face_image) | |
height, width, _ = face_image_cv2.shape | |
# Extract face features | |
face_info = app.get(face_image_cv2) | |
if len(face_info) == 0: | |
raise gr.Error( | |
f"Unable to detect a face in the image. Please upload a different photo with a clear face." | |
) | |
face_info = sorted( | |
face_info, | |
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1], | |
)[-1] # only use the maximum face | |
face_emb = torch.from_numpy(face_info.normed_embedding) | |
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) | |
img_controlnet = face_image | |
if pose_image_path is not None: | |
pose_image = load_image(pose_image_path) | |
pose_image = resize_img(pose_image, max_side=1024) | |
img_controlnet = pose_image | |
pose_image_cv2 = convert_from_image_to_cv2(pose_image) | |
face_info = app.get(pose_image_cv2) | |
if len(face_info) == 0: | |
raise gr.Error( | |
f"Cannot find any face in the reference image! Please upload another person image" | |
) | |
face_info = face_info[-1] | |
face_kps = draw_kps(pose_image, face_info["kps"]) | |
width, height = face_kps.size | |
print("Start inference...") | |
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") | |
pipe.set_ip_adapter_scale(adapter_strength_ratio) | |
images = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image_embeds=face_emb, | |
image=face_kps, | |
control_mask=control_mask, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
num_inference_steps=num_steps, | |
guidance_scale=guidance_scale, | |
height=height, | |
width=width, | |
generator=torch.Generator(device=device).manual_seed(seed), | |
).images | |
return images[0], gr.update(visible=True) | |
css = """ | |
.gradio-container {width: 85% !important} | |
""" | |
with gr.Blocks(css=css) as demo: | |
# description | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
# upload face image | |
face_file = gr.Image( | |
label="Upload a photo of your face", type="filepath" | |
) | |
# optional: upload a reference pose image | |
pose_file = gr.Image( | |
label="Upload a reference pose image (Optional)", | |
type="filepath", | |
) | |
# prompt | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Give simple prompt is enough to achieve good face fidelity", | |
placeholder="A photo of a person", | |
value="", | |
) | |
submit = gr.Button("Submit", variant="primary") | |
enable_LCM = gr.Checkbox( | |
label="Enable Fast Inference with LCM", value=enable_lcm_arg, | |
info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces", | |
) | |
# strength | |
controlnet_conditioning_scale = gr.Slider( | |
label="IdentityNet strength (for fidelity)", | |
minimum=0, | |
maximum=1.0, | |
step=0.1, | |
value=0.8, | |
) | |
adapter_strength_ratio = gr.Slider( | |
label="Image adapter strength (for detail)", | |
minimum=0, | |
maximum=1.2, | |
step=0.1, | |
value=0.8, | |
) | |
with gr.Accordion(open=False, label="Advanced Options"): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
placeholder="low quality", | |
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
) | |
num_steps = gr.Slider( | |
label="Number of sample steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=20, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Column(scale=1): | |
gallery = gr.Image(label="Generated Images") | |
usage_tips = gr.Markdown( | |
label="InstantID Usage Tips", value=tips, visible=False | |
) | |
submit.click( | |
fn=remove_tips, | |
outputs=usage_tips, | |
).then( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate_image, | |
inputs=[ | |
face_file, | |
pose_file, | |
prompt, | |
negative_prompt, | |
num_steps, | |
controlnet_conditioning_scale, | |
adapter_strength_ratio, | |
guidance_scale, | |
seed, | |
], | |
outputs=[gallery, usage_tips], | |
) | |
enable_LCM.input( | |
fn=toggle_lcm_ui, | |
inputs=[enable_LCM], | |
outputs=[num_steps, guidance_scale], | |
queue=False, | |
) | |
gr.Examples( | |
examples=get_example(), | |
inputs=[face_file, pose_file, prompt, negative_prompt], | |
fn=run_for_examples, | |
outputs=[gallery, usage_tips], | |
cache_examples=True, | |
) | |
gr.Markdown(article) | |
demo.queue(api_open=False) | |
demo.launch() |