InstantID-XS / app.py
XuDongZhou's picture
Update app.py
d4012a9 verified
raw
history blame
13.6 kB
import cv2, os
import torch
import random
import numpy as np
import spaces
import PIL
from PIL import Image
from typing import Tuple
import diffusers
from diffusers.utils import load_image
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
UniPCMultistepScheduler,
)
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from pipeline_controlnet_xs_sd_xl_instantid import StableDiffusionXLInstantIDXSPipeline, UNetControlNetXSModel
from utils.controlnet_xs import ControlNetXSAdapter
# from controlnet_aux import OpenposeDetector
import gradio as gr
import torch.nn.functional as F
from torchvision.transforms import Compose
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
base_model = 'frankjoshua/realvisxlV40_v40Bakedvae'
vae_path = 'madebyollin/sdxl-vae-fp16-fix'
ckpt = 'RED-AIGC/InstantID-XS'
image_proj_path = os.path.join(ckpt, "image_proj.bin")
cnxs_path = os.path.join(ckpt, "controlnetxs.bin")
cross_attn_path = os.path.join(ckpt, "cross_attn.bin")
# Load face encoder
app = FaceAnalysis(
name="antelopev2",
root="./",
providers=["CPUExecutionProvider"],
)
app.prepare(ctx_id=0, det_size=(640, 640))
def get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=torch.float16):
unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet").to(device, dtype=weight_dtype)
controlnet = ControlNetXSAdapter.from_unet(unet, size_ratio=size_ratio, learn_time_embedding=True)
state_dict = torch.load(cnxs_path, map_location="cpu", weights_only=True)
ctrl_state_dict = {}
for key, value in state_dict.items():
if 'attn2.processor' not in key:
if 'ctrl_' in key and 'ctrl_to_base' not in key:
key = key.replace('ctrl_', '')
if 'up_blocks' in key:
key = key.replace('up_blocks', 'up_connections')
ctrl_state_dict[key] = value
controlnet.load_state_dict(ctrl_state_dict, strict=True)
controlnet.to(device, dtype=weight_dtype)
ControlNetXS = UNetControlNetXSModel.from_unet(unet, controlnet).to(device, dtype=weight_dtype)
return ControlNetXS
ControlNetXS = get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=weight_dtype)
vae = AutoencoderKL.from_pretrained(vae_path)
pipe = StableDiffusionXLInstantIDXSPipeline.from_pretrained(
pretrained_model_name_or_path,
vae=vae,
unet=ControlNetXS,
controlnet=None,
torch_dtype=weight_dtype,
)
pipe.cuda(device=device, dtype=weight_dtype, use_xformers=True)
pipe.load_ip_adapter(image_proj_path, cross_attn_path)
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.unet.config.ctrl_learn_time_embedding = True
pipe = pipe.to(args.device)
def toggle_lcm_ui(value):
if value:
return (
gr.update(minimum=0, maximum=100, step=1, value=5),
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5),
)
else:
return (
gr.update(minimum=5, maximum=100, step=1, value=30),
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5),
)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def remove_tips():
return gr.update(visible=False)
def get_example():
case = [
[
"./examples/1.jpg",
None,
"a woman,(looking at the viewer), portrait, daily wear, 8K texture, realistic, symmetrical hyperdetailed texture, masterpiece, enhanced details, (eye highlight:2), perfect composition, natural lighting, best quality, authentic, natural posture",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/1.jpeg",
"./examples/poses/pose1.jpg",
"a woman,(looking at the viewer), portrait, daily wear, 8K texture, realistic, symmetrical hyperdetailed texture, masterpiece, enhanced details, (eye highlight:2), perfect composition, natural lighting, best quality, authentic, natural posture",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
]
return case
def run_for_examples(face_file, pose_file, prompt, style, negative_prompt):
return generate_image(
face_file,
pose_file,
prompt,
negative_prompt,
20, # num_steps
0.8, # identitynet_strength_ratio
0.8, # adapter_strength_ratio
0.8, # pose_strength
5.0, # guidance_scale
42, # seed
)
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
@spaces.GPU
def generate_image(
face_image_path,
pose_image_path,
prompt,
negative_prompt,
num_steps,
controlnet_conditioning_scale,
adapter_strength_ratio,
guidance_scale,
seed,
progress=gr.Progress(track_tqdm=True),
):
if face_image_path is None:
raise gr.Error(
f"Cannot find any input face image! Please upload the face image"
)
if prompt is None:
prompt = "a person"
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = app.get(face_image_cv2)
if len(face_info) == 0:
raise gr.Error(
f"Unable to detect a face in the image. Please upload a different photo with a clear face."
)
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[-1] # only use the maximum face
face_emb = torch.from_numpy(face_info.normed_embedding)
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
img_controlnet = face_image
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = app.get(pose_image_cv2)
if len(face_info) == 0:
raise gr.Error(
f"Cannot find any face in the reference image! Please upload another person image"
)
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=face_kps,
control_mask=control_mask,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=torch.Generator(device=device).manual_seed(seed),
).images
return images[0], gr.update(visible=True)
css = """
.gradio-container {width: 85% !important}
"""
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
# upload face image
face_file = gr.Image(
label="Upload a photo of your face", type="filepath"
)
# optional: upload a reference pose image
pose_file = gr.Image(
label="Upload a reference pose image (Optional)",
type="filepath",
)
# prompt
prompt = gr.Textbox(
label="Prompt",
info="Give simple prompt is enough to achieve good face fidelity",
placeholder="A photo of a person",
value="",
)
submit = gr.Button("Submit", variant="primary")
enable_LCM = gr.Checkbox(
label="Enable Fast Inference with LCM", value=enable_lcm_arg,
info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces",
)
# strength
controlnet_conditioning_scale = gr.Slider(
label="IdentityNet strength (for fidelity)",
minimum=0,
maximum=1.0,
step=0.1,
value=0.8,
)
adapter_strength_ratio = gr.Slider(
label="Image adapter strength (for detail)",
minimum=0,
maximum=1.2,
step=0.1,
value=0.8,
)
with gr.Accordion(open=False, label="Advanced Options"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=1,
maximum=100,
step=1,
value=20,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5.0,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column(scale=1):
gallery = gr.Image(label="Generated Images")
usage_tips = gr.Markdown(
label="InstantID Usage Tips", value=tips, visible=False
)
submit.click(
fn=remove_tips,
outputs=usage_tips,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[
face_file,
pose_file,
prompt,
negative_prompt,
num_steps,
controlnet_conditioning_scale,
adapter_strength_ratio,
guidance_scale,
seed,
],
outputs=[gallery, usage_tips],
)
enable_LCM.input(
fn=toggle_lcm_ui,
inputs=[enable_LCM],
outputs=[num_steps, guidance_scale],
queue=False,
)
gr.Examples(
examples=get_example(),
inputs=[face_file, pose_file, prompt, negative_prompt],
fn=run_for_examples,
outputs=[gallery, usage_tips],
cache_examples=True,
)
gr.Markdown(article)
demo.queue(api_open=False)
demo.launch()