File size: 8,095 Bytes
6cb075b de7b575 6cb075b de7b575 6cb075b de7b575 6cb075b de7b575 6cb075b de7b575 6cb075b de7b575 6cb075b 5376189 6cb075b 48d5d8a 6cb075b de7b575 6cb075b de7b575 6cb075b de7b575 6cb075b de7b575 6cb075b de7b575 6cb075b de7b575 6cb075b de7b575 6cb075b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import pandas as pd
import json
import gradio as gr
from pathlib import Path
from ragatouille import RAGPretrainedModel
from gradio_client import Client
from tempfile import NamedTemporaryFile
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter
# calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz
from backend.semantic_search import table, retriever
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()
# Set up logging
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = Client("Qwen/Qwen1.5-110B-Chat-demo")
def system_instructions(question_difficulty, topic, documents_str):
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
RAG_db = gr.State()
quiz_data = None
def json_to_excel(output_json):
data = []
gr.Warning('Generating Shareable file link..', duration=30)
for i in range(1, 11): # Assuming there are 10 questions
question_key = f"Q{i}"
answer_key = f"A{i}"
question = output_json.get(question_key, '')
correct_answer_key = output_json.get(answer_key, '')
correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
options = [output_json.get(key, '') for key in option_keys]
data.append([
question,
"Multiple Choice",
options[0],
options[1],
options[2] if len(options) > 2 else '',
options[3] if len(options) > 3 else '',
options[4] if len(options) > 4 else '',
correct_answer,
30,
''
])
df = pd.DataFrame(data, columns=[
"Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Option 5", "Correct Answer", "Time in seconds", "Image Link"
])
temp_file = NamedTemporaryFile(delete=True, suffix=".xlsx")
df.to_excel(temp_file.name, index=False)
return temp_file.name
colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple")
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
with gr.Row():
with gr.Column(scale=2):
gr.Image(value='logo.png', height=200, width=200)
with gr.Column(scale=6):
gr.HTML("""
<center>
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
<i>⚠️ Students can create quiz from any topic from 9 science and evaluate themselves! ⚠️</i>
</center>
""")
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from 9TH Science cbse")
with gr.Row():
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings")
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
quiz_msg = gr.Textbox()
question_radios = [gr.Radio(visible=False) for _ in range(10)]
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
def generate_quiz(question_difficulty, topic, cross_encoder):
top_k_rank = 10
documents = []
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
if cross_encoder == '(HIGH ACCURATE) ColBERT':
gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait', duration=100)
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
documents_full = RAG_db.value.search(topic, k=top_k_rank)
documents = [item['content'] for item in documents_full]
else:
document_start = perf_counter()
query_vec = retriever.encode(topic)
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
query_doc_pair = [[topic, doc] for doc in documents]
if cross_encoder == '(ACCURATE) BGE reranker':
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
cross_scores = cross_encoder1.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
print('Formatted Prompt: ', formatted_prompt)
try:
response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
response1 = response[1][0][1]
start_index = response1.find('{')
end_index = response1.rfind('}')
cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
print('Cleaned Response:', cleaned_response)
output_json = json.loads(cleaned_response)
global quiz_data
quiz_data = output_json
excel_file = json_to_excel(output_json)
question_radio_list = []
for question_num in range(1, 11):
question_key = f"Q{question_num}"
answer_key = f"A{question_num}"
question = output_json.get(question_key)
answer = output_json.get(answer_key)
if not question or not answer:
continue
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
question_radio_list.append(radio)
return ['Quiz Generated!'] + question_radio_list + [excel_file]
except json.JSONDecodeError as e:
logger.error(f"Failed to decode JSON: {e}")
check_button = gr.Button("Check Score")
score_textbox = gr.Markdown()
@check_button.click(inputs=question_radios, outputs=score_textbox)
def compare_answers(*user_answers):
user_answer_list = list(user_answers)
answers_list = []
for question_num in range(1, 20):
answer_key = f"A{question_num}"
answer = quiz_data.get(answer_key)
if not answer:
break
answers_list.append(answer)
score = sum(1 for item in user_answer_list if item in answers_list)
if score > 7:
message = f"### Excellent! You got {score} out of 10!"
elif score > 5:
message = f"### Good! You got {score} out of 10!"
else:
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
return message
QUIZBOT.queue()
QUIZBOT.launch(debug=True)
|