File size: 8,095 Bytes
6cb075b
 
 
 
 
 
 
 
 
 
 
de7b575
6cb075b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7b575
6cb075b
de7b575
 
 
 
 
 
 
 
 
 
6cb075b
 
 
de7b575
6cb075b
 
de7b575
6cb075b
 
 
de7b575
 
6cb075b
 
 
 
 
 
 
 
 
5376189
6cb075b
 
 
48d5d8a
6cb075b
 
de7b575
6cb075b
 
 
 
 
 
 
 
 
 
 
 
 
de7b575
6cb075b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7b575
6cb075b
 
 
 
 
 
 
de7b575
6cb075b
 
 
 
 
 
 
 
 
 
 
de7b575
6cb075b
 
 
 
 
 
 
 
 
 
 
 
 
de7b575
6cb075b
 
 
 
 
 
 
 
 
 
 
de7b575
6cb075b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import pandas as pd
import json
import gradio as gr
from pathlib import Path
from ragatouille import RAGPretrainedModel
from gradio_client import Client
from tempfile import NamedTemporaryFile
from sentence_transformers import CrossEncoder
import numpy as np
from time import perf_counter

# calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz  
from backend.semantic_search import table, retriever

VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path.cwd()

# Set up logging
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

client = Client("Qwen/Qwen1.5-110B-Chat-demo")

def system_instructions(question_difficulty, topic, documents_str):
    return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""

RAG_db = gr.State()
quiz_data = None

def json_to_excel(output_json):
    data = []
    gr.Warning('Generating Shareable file link..', duration=30)
    for i in range(1, 11):  # Assuming there are 10 questions
        question_key = f"Q{i}"
        answer_key = f"A{i}"

        question = output_json.get(question_key, '')
        correct_answer_key = output_json.get(answer_key, '')
        correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''

        option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
        options = [output_json.get(key, '') for key in option_keys]

        data.append([
            question,
            "Multiple Choice",
            options[0],
            options[1],
            options[2] if len(options) > 2 else '',
            options[3] if len(options) > 3 else '',
            options[4] if len(options) > 4 else '',
            correct_answer,
            30,
            ''
        ])

    df = pd.DataFrame(data, columns=[
        "Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Option 5", "Correct Answer", "Time in seconds", "Image Link"
    ])

    temp_file = NamedTemporaryFile(delete=True, suffix=".xlsx")
    df.to_excel(temp_file.name, index=False)
    return temp_file.name

colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple")

with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
    with gr.Row():
        with gr.Column(scale=2):
            gr.Image(value='logo.png', height=200, width=200)
        with gr.Column(scale=6):
            gr.HTML("""
            <center>
                <h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
                <h2>Generative AI-powered Capacity building for STUDENTS</h2>
                <i>⚠️ Students can create quiz from any topic from 9 science and evaluate themselves! ⚠️</i>
            </center>
            """)

    topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from 9TH Science cbse")
    with gr.Row():
        difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
        model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings")

    generate_quiz_btn = gr.Button("Generate Quiz!🚀")
    quiz_msg = gr.Textbox()

    question_radios = [gr.Radio(visible=False) for _ in range(10)]

    @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
    def generate_quiz(question_difficulty, topic, cross_encoder):
        top_k_rank = 10
        documents = []
        gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)

        if cross_encoder == '(HIGH ACCURATE) ColBERT':
            gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait', duration=100)
            RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
            RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
            documents_full = RAG_db.value.search(topic, k=top_k_rank)
            documents = [item['content'] for item in documents_full]
        
        else:
            document_start = perf_counter()
            query_vec = retriever.encode(topic)
            doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)

            documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
            documents = [doc[TEXT_COLUMN_NAME] for doc in documents]

            query_doc_pair = [[topic, doc] for doc in documents]
            if cross_encoder == '(ACCURATE) BGE reranker':
                cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
            
            cross_scores = cross_encoder1.predict(query_doc_pair)
            sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
            documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]

        formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
        print('Formatted Prompt: ', formatted_prompt)
        try:
            response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
            response1 = response[1][0][1]
            
            start_index = response1.find('{')
            end_index = response1.rfind('}')
            cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
            print('Cleaned Response:', cleaned_response)
            output_json = json.loads(cleaned_response)
            global quiz_data
            quiz_data = output_json
            excel_file = json_to_excel(output_json)

            question_radio_list = []
            for question_num in range(1, 11):
                question_key = f"Q{question_num}"
                answer_key = f"A{question_num}"

                question = output_json.get(question_key)
                answer = output_json.get(answer_key)

                if not question or not answer:
                    continue

                choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
                choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]

                radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
                question_radio_list.append(radio)

            return ['Quiz Generated!'] + question_radio_list + [excel_file]

        except json.JSONDecodeError as e:
            logger.error(f"Failed to decode JSON: {e}")

    check_button = gr.Button("Check Score")
    score_textbox = gr.Markdown()

    @check_button.click(inputs=question_radios, outputs=score_textbox)
    def compare_answers(*user_answers):
        user_answer_list = list(user_answers)
        answers_list = []

        for question_num in range(1, 20):
            answer_key = f"A{question_num}"
            answer = quiz_data.get(answer_key)
            if not answer:
                break
            answers_list.append(answer)

        score = sum(1 for item in user_answer_list if item in answers_list)

        if score > 7:
            message = f"### Excellent! You got {score} out of 10!"
        elif score > 5:
            message = f"### Good! You got {score} out of 10!"
        else:
            message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"

        return message

QUIZBOT.queue()
QUIZBOT.launch(debug=True)