Queensly commited on
Commit
d1ccf34
1 Parent(s): c6387b3

Updated file location

Browse files
Files changed (3) hide show
  1. sales.png +0 -0
  2. src/app.py +11 -11
  3. utils.py +29 -0
sales.png ADDED
src/app.py CHANGED
@@ -4,10 +4,10 @@ import pandas as pd
4
  import numpy as np
5
  import pickle
6
  import datetime
7
- import os
8
- import sys
9
  # from utils import payday, date_extracts
10
- sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
11
 
12
  from utils import payday, date_extracts
13
 
@@ -23,11 +23,11 @@ st.set_page_config(
23
  }
24
  )
25
 
26
- # Define directory paths
27
- DIRPATH = os.path.dirname(os.path.realpath(__file__))
28
- ml_components_1 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_1.pkl")
29
- ml_components_2 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_2.pkl")
30
- image_path = os.path.join(DIRPATH, "..", "src", "assets", "images", "sales.png")
31
 
32
 
33
  # create a functions to load pickle file.
@@ -38,8 +38,8 @@ def load_pickle(filename):
38
 
39
 
40
  #load all pickle files
41
- ml_compos_1 = load_pickle(ml_components_1)
42
- ml_compos_2 = load_pickle(ml_components_2)
43
 
44
  # components in ml_compos_2
45
  categorical_pipeline = ml_compos_2['categorical_pipeline']
@@ -54,7 +54,7 @@ cat_cols = ml_compos_1['cat_cols']
54
  st.title('✨SALES FORECASTING APP✨')
55
 
56
  # adding image
57
- image=Image.open(image_path)
58
  st.image(image, width=600)
59
 
60
 
 
4
  import numpy as np
5
  import pickle
6
  import datetime
7
+ # import os
8
+ # import sys
9
  # from utils import payday, date_extracts
10
+ # sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
11
 
12
  from utils import payday, date_extracts
13
 
 
23
  }
24
  )
25
 
26
+ # # Define directory paths
27
+ # DIRPATH = os.path.dirname(os.path.realpath(__file__))
28
+ # ml_components_1 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_1.pkl")
29
+ # ml_components_2 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_2.pkl")
30
+ # image_path = os.path.join(DIRPATH, "..", "src", "assets", "images", "sales.png")
31
 
32
 
33
  # create a functions to load pickle file.
 
38
 
39
 
40
  #load all pickle files
41
+ ml_compos_1 = load_pickle('ml_components_1.pkl')
42
+ ml_compos_2 = load_pickle('ml_components_2.pkl')
43
 
44
  # components in ml_compos_2
45
  categorical_pipeline = ml_compos_2['categorical_pipeline']
 
54
  st.title('✨SALES FORECASTING APP✨')
55
 
56
  # adding image
57
+ image=Image.open('sales.png')
58
  st.image(image, width=600)
59
 
60
 
utils.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pickle
3
+
4
+
5
+
6
+
7
+ def payday(row):
8
+ if row.DayOfMonth == 15 or row.Is_month_end == 1:
9
+ return 1
10
+ else:
11
+ return 0
12
+
13
+
14
+ def date_extracts(data):
15
+ data['Year'] = data.index.year
16
+ data['Month'] = data.index.month
17
+ data['DayOfMonth'] = data.index.day
18
+ data['DaysInMonth'] = data.index.days_in_month
19
+ data['DayOfYear'] = data.index.day_of_year
20
+ data['DayOfWeek'] = data.index.dayofweek
21
+ data['Week'] = data.index.isocalendar().week
22
+ data['Is_weekend'] = np.where(data['DayOfWeek'] > 4, 1, 0)
23
+ data['Is_month_start'] = data.index.is_month_start.astype(int)
24
+ data['Is_month_end'] = data.index.is_month_end.astype(int)
25
+ data['Quarter'] = data.index.quarter
26
+ data['Is_quarter_start'] = data.index.is_quarter_start.astype(int)
27
+ data['Is_quarter_end'] = data.index.is_quarter_end.astype(int)
28
+ data['Is_year_start'] = data.index.is_year_start.astype(int)
29
+ data['Is_year_end'] = data.index.is_year_end.astype(int)