Spaces:
Build error
Build error
Updated file location
Browse files- sales.png +0 -0
- src/app.py +11 -11
- utils.py +29 -0
sales.png
ADDED
src/app.py
CHANGED
@@ -4,10 +4,10 @@ import pandas as pd
|
|
4 |
import numpy as np
|
5 |
import pickle
|
6 |
import datetime
|
7 |
-
import os
|
8 |
-
import sys
|
9 |
# from utils import payday, date_extracts
|
10 |
-
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
11 |
|
12 |
from utils import payday, date_extracts
|
13 |
|
@@ -23,11 +23,11 @@ st.set_page_config(
|
|
23 |
}
|
24 |
)
|
25 |
|
26 |
-
# Define directory paths
|
27 |
-
DIRPATH = os.path.dirname(os.path.realpath(__file__))
|
28 |
-
ml_components_1 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_1.pkl")
|
29 |
-
ml_components_2 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_2.pkl")
|
30 |
-
image_path = os.path.join(DIRPATH, "..", "src", "assets", "images", "sales.png")
|
31 |
|
32 |
|
33 |
# create a functions to load pickle file.
|
@@ -38,8 +38,8 @@ def load_pickle(filename):
|
|
38 |
|
39 |
|
40 |
#load all pickle files
|
41 |
-
ml_compos_1 = load_pickle(ml_components_1)
|
42 |
-
ml_compos_2 = load_pickle(ml_components_2)
|
43 |
|
44 |
# components in ml_compos_2
|
45 |
categorical_pipeline = ml_compos_2['categorical_pipeline']
|
@@ -54,7 +54,7 @@ cat_cols = ml_compos_1['cat_cols']
|
|
54 |
st.title('✨SALES FORECASTING APP✨')
|
55 |
|
56 |
# adding image
|
57 |
-
image=Image.open(
|
58 |
st.image(image, width=600)
|
59 |
|
60 |
|
|
|
4 |
import numpy as np
|
5 |
import pickle
|
6 |
import datetime
|
7 |
+
# import os
|
8 |
+
# import sys
|
9 |
# from utils import payday, date_extracts
|
10 |
+
# sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
11 |
|
12 |
from utils import payday, date_extracts
|
13 |
|
|
|
23 |
}
|
24 |
)
|
25 |
|
26 |
+
# # Define directory paths
|
27 |
+
# DIRPATH = os.path.dirname(os.path.realpath(__file__))
|
28 |
+
# ml_components_1 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_1.pkl")
|
29 |
+
# ml_components_2 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_2.pkl")
|
30 |
+
# image_path = os.path.join(DIRPATH, "..", "src", "assets", "images", "sales.png")
|
31 |
|
32 |
|
33 |
# create a functions to load pickle file.
|
|
|
38 |
|
39 |
|
40 |
#load all pickle files
|
41 |
+
ml_compos_1 = load_pickle('ml_components_1.pkl')
|
42 |
+
ml_compos_2 = load_pickle('ml_components_2.pkl')
|
43 |
|
44 |
# components in ml_compos_2
|
45 |
categorical_pipeline = ml_compos_2['categorical_pipeline']
|
|
|
54 |
st.title('✨SALES FORECASTING APP✨')
|
55 |
|
56 |
# adding image
|
57 |
+
image=Image.open('sales.png')
|
58 |
st.image(image, width=600)
|
59 |
|
60 |
|
utils.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
def payday(row):
|
8 |
+
if row.DayOfMonth == 15 or row.Is_month_end == 1:
|
9 |
+
return 1
|
10 |
+
else:
|
11 |
+
return 0
|
12 |
+
|
13 |
+
|
14 |
+
def date_extracts(data):
|
15 |
+
data['Year'] = data.index.year
|
16 |
+
data['Month'] = data.index.month
|
17 |
+
data['DayOfMonth'] = data.index.day
|
18 |
+
data['DaysInMonth'] = data.index.days_in_month
|
19 |
+
data['DayOfYear'] = data.index.day_of_year
|
20 |
+
data['DayOfWeek'] = data.index.dayofweek
|
21 |
+
data['Week'] = data.index.isocalendar().week
|
22 |
+
data['Is_weekend'] = np.where(data['DayOfWeek'] > 4, 1, 0)
|
23 |
+
data['Is_month_start'] = data.index.is_month_start.astype(int)
|
24 |
+
data['Is_month_end'] = data.index.is_month_end.astype(int)
|
25 |
+
data['Quarter'] = data.index.quarter
|
26 |
+
data['Is_quarter_start'] = data.index.is_quarter_start.astype(int)
|
27 |
+
data['Is_quarter_end'] = data.index.is_quarter_end.astype(int)
|
28 |
+
data['Is_year_start'] = data.index.is_year_start.astype(int)
|
29 |
+
data['Is_year_end'] = data.index.is_year_end.astype(int)
|