mattritchey commited on
Commit
f1c52e8
1 Parent(s): a8cd746

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -133
app.py CHANGED
@@ -1,3 +1,9 @@
 
 
 
 
 
 
1
 
2
  import gradio as gr
3
 
@@ -18,15 +24,6 @@ from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
18
  from transformers import TextIteratorStreamer
19
  from threading import Thread
20
 
21
- # MR Added
22
- from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
23
- from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
24
- from langchain.callbacks.manager import CallbackManager
25
- from langchain.llms import LlamaCpp
26
- callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
27
- model = 'dolphin-2_6-phi-2.Q4_K_M.gguf'
28
-
29
-
30
  # Prompt template
31
  template = """Instruction:
32
  You are an AI assistant for answering questions about the provided context.
@@ -39,116 +36,85 @@ Question: {question}
39
  Output:\n"""
40
 
41
  QA_PROMPT = PromptTemplate(
42
- template=template,
43
- input_variables=["question", "context"]
44
  )
45
 
46
- # Commented out: MR
47
- # # Load Phi-2 model from hugging face hub
48
- # model_id = "microsoft/phi-2"
49
 
50
- # tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
51
- # model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="auto", trust_remote_code=True)
52
 
53
- # # sentence transformers to be used in vector store
54
- # embeddings = HuggingFaceEmbeddings(
55
- # model_name="sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
56
- # model_kwargs={'device': 'cpu'},
57
- # encode_kwargs={'normalize_embeddings': False}
58
- # )
59
 
60
- # MR Added
61
- embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
62
-
63
- # filename = "Oppenheimer-movie-wiki.txt"
64
  # Returns a faiss vector store retriever given a txt file
65
-
66
-
67
  def prepare_vector_store_retriever(filename):
68
- # Load data
69
- loader = UnstructuredFileLoader(filename)
70
- raw_documents = loader.load()
71
-
72
- # Split the text
73
- text_splitter = CharacterTextSplitter(
74
- separator="\n\n",
75
- chunk_size=800,
76
- chunk_overlap=0,
77
- length_function=len
78
- )
79
-
80
- documents = text_splitter.split_documents(raw_documents)
81
 
82
- # Creating a vectorstore
83
- vectorstore = FAISS.from_documents(
84
- documents, embeddings, distance_strategy=DistanceStrategy.COSINE)
 
 
 
 
85
 
86
- return VectorStoreRetriever(vectorstore=vectorstore, search_kwargs={"k": 2})
87
 
88
- # Retrieveal QA chian
 
89
 
 
90
 
 
91
  def get_retrieval_qa_chain(text_file, hf_model):
92
- retriever = default_retriever
93
- if text_file != default_text_file:
94
- retriever = prepare_vector_store_retriever(text_file)
95
-
96
- chain = RetrievalQA.from_chain_type(
97
- llm=hf_model,
98
- retriever=retriever,
99
- chain_type_kwargs={"prompt": QA_PROMPT},
100
- )
101
- return chain
102
 
103
  # Generates response using the question answering chain defined earlier
 
 
 
 
 
 
 
104
 
 
 
105
 
106
- def generate(question, answer, text_file, max_new_tokens):
107
- # streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0)
108
- # phi2_pipeline = pipeline(
109
- # "text-generation", tokenizer=tokenizer, model=model, max_new_tokens=max_new_tokens,
110
- # pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id,
111
- # device_map="auto", streamer=streamer
112
- # )
113
-
114
- # hf_model = HuggingFacePipeline(pipeline=phi2_pipeline)
115
-
116
- # qa_chain = get_retrieval_qa_chain(text_file, hf_model)
117
-
118
- # query = f"{question}"
119
-
120
- # thread = Thread(target=qa_chain.invoke, kwargs={"input": {"query": query}})
121
- # thread.start()
122
-
123
- # response = ""
124
- # for token in streamer:
125
- # response += token
126
- # yield response.strip()
127
-
128
- # MR Added
129
- query = f"{question}"
130
- hf_model = LlamaCpp(model_path=model,
131
- n_ctx=10000,
132
- max_tokens=max_new_tokens,
133
- temperature=0,
134
- n_gpu_layers=16,
135
- n_batch=1024,
136
- callback_manager=callback_manager,
137
- verbose=True,
138
- )
139
-
140
- response = hf_model.invoke(query)
141
- return response
142
 
143
- # replaces the retreiver in the question answering chain whenever a new file is uploaded
 
144
 
 
 
 
 
145
 
 
146
  def upload_file(file):
147
- return file, file
148
-
149
 
150
  with gr.Blocks() as demo:
151
- gr.Markdown("""
152
  # Retrieval Augmented Generation with Phi-2: Question Answering demo
153
  ### This demo uses the Phi-2 language model and Retrieval Augmented Generation (RAG). It allows you to upload a txt file and ask the model questions related to the content of that file.
154
  ### If you don't have one, there is a txt file already loaded, the new Oppenheimer movie's entire wikipedia page. The movie came out very recently in July, 2023, so the Phi-2 model is not aware of it.
@@ -157,42 +123,37 @@ with gr.Blocks() as demo:
157
  The model is then able to answer questions by incorporating knowledge from the newly provided document. RAG can be used with thousands of documents, but this demo is limited to just one txt file.
158
  """)
159
 
160
- default_text_file = "Oppenheimer-movie-wiki.txt"
161
- default_retriever = prepare_vector_store_retriever(default_text_file)
162
-
163
- text_file = gr.State(default_text_file)
164
-
165
- gr.Markdown(
166
- "## Upload a txt file or Use the Default 'Oppenheimer-movie-wiki.txt' that has already been loaded")
167
-
168
- file_name = gr.Textbox(label="Loaded text file",
169
- value=default_text_file, lines=1, interactive=False)
170
- upload_button = gr.UploadButton(
171
- label="Click to upload a text file",
172
- file_types=["text"],
173
- file_count="single"
174
- )
175
- upload_button.upload(upload_file, upload_button, [file_name, text_file])
176
-
177
- gr.Markdown("## Enter your question")
178
- tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens",
179
- info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")
180
-
181
- with gr.Row():
182
- with gr.Column():
183
- ques = gr.Textbox(label="Question",
184
- placeholder="Enter text here", lines=3)
185
- with gr.Column():
186
- ans = gr.Textbox(label="Answer", lines=4, interactive=False)
187
- with gr.Row():
188
- with gr.Column():
189
- btn = gr.Button("Submit")
190
- with gr.Column():
191
- clear = gr.ClearButton([ques, ans])
192
-
193
- btn.click(fn=generate, inputs=[ques, ans,
194
- text_file, tokens_slider], outputs=[ans])
195
- examples = gr.Examples(
196
  examples=[
197
  "Who portrayed J. Robert Oppenheimer in the new Oppenheimer movie?",
198
  "In the plot of the movie, why did Lewis Strauss resent Robert Oppenheimer?"
@@ -200,4 +161,4 @@ with gr.Blocks() as demo:
200
  inputs=[ques],
201
  )
202
 
203
- demo.queue().launch()
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Tue Jan 30 14:11:53 2024
4
+
5
+ @author: mritchey
6
+ """
7
 
8
  import gradio as gr
9
 
 
24
  from transformers import TextIteratorStreamer
25
  from threading import Thread
26
 
 
 
 
 
 
 
 
 
 
27
  # Prompt template
28
  template = """Instruction:
29
  You are an AI assistant for answering questions about the provided context.
 
36
  Output:\n"""
37
 
38
  QA_PROMPT = PromptTemplate(
39
+ template=template,
40
+ input_variables=["question", "context"]
41
  )
42
 
43
+ # Load Phi-2 model from hugging face hub
44
+ model_id = "TheBloke/dolphin-2_6-phi-2-GPTQ" #change MR
 
45
 
46
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
47
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="auto", trust_remote_code=True)
48
 
49
+ # sentence transformers to be used in vector store
50
+ embeddings = HuggingFaceEmbeddings(
51
+ model_name="sentence-transformers/all-mpnet-base-v2", #Change MR
52
+ model_kwargs={'device': 'cpu'},
53
+ encode_kwargs={'normalize_embeddings': False}
54
+ )
55
 
 
 
 
 
56
  # Returns a faiss vector store retriever given a txt file
 
 
57
  def prepare_vector_store_retriever(filename):
58
+ # Load data
59
+ loader = UnstructuredFileLoader(filename)
60
+ raw_documents = loader.load()
 
 
 
 
 
 
 
 
 
 
61
 
62
+ # Split the text
63
+ text_splitter = CharacterTextSplitter(
64
+ separator="\n\n",
65
+ chunk_size=800,
66
+ chunk_overlap=0,
67
+ length_function=len
68
+ )
69
 
70
+ documents = text_splitter.split_documents(raw_documents)
71
 
72
+ # Creating a vectorstore
73
+ vectorstore = FAISS.from_documents(documents, embeddings, distance_strategy=DistanceStrategy.COSINE)
74
 
75
+ return VectorStoreRetriever(vectorstore=vectorstore, search_kwargs={"k": 2})
76
 
77
+ # Retrieveal QA chian
78
  def get_retrieval_qa_chain(text_file, hf_model):
79
+ retriever = default_retriever
80
+ if text_file != default_text_file:
81
+ retriever = prepare_vector_store_retriever(text_file)
82
+
83
+ chain = RetrievalQA.from_chain_type(
84
+ llm=hf_model,
85
+ retriever=retriever,
86
+ chain_type_kwargs={"prompt": QA_PROMPT},
87
+ )
88
+ return chain
89
 
90
  # Generates response using the question answering chain defined earlier
91
+ def generate(question, answer, text_file, max_new_tokens):
92
+ streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0)
93
+ phi2_pipeline = pipeline(
94
+ "text-generation", tokenizer=tokenizer, model=model, max_new_tokens=max_new_tokens,
95
+ pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id,
96
+ device_map="auto", streamer=streamer
97
+ )
98
 
99
+ hf_model = HuggingFacePipeline(pipeline=phi2_pipeline)
100
+ qa_chain = get_retrieval_qa_chain(text_file, hf_model)
101
 
102
+ query = f"{question}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
+ thread = Thread(target=qa_chain.invoke, kwargs={"input": {"query": query}})
105
+ thread.start()
106
 
107
+ response = ""
108
+ for token in streamer:
109
+ response += token
110
+ yield response.strip()
111
 
112
+ # replaces the retreiver in the question answering chain whenever a new file is uploaded
113
  def upload_file(file):
114
+ return file, file
 
115
 
116
  with gr.Blocks() as demo:
117
+ gr.Markdown("""
118
  # Retrieval Augmented Generation with Phi-2: Question Answering demo
119
  ### This demo uses the Phi-2 language model and Retrieval Augmented Generation (RAG). It allows you to upload a txt file and ask the model questions related to the content of that file.
120
  ### If you don't have one, there is a txt file already loaded, the new Oppenheimer movie's entire wikipedia page. The movie came out very recently in July, 2023, so the Phi-2 model is not aware of it.
 
123
  The model is then able to answer questions by incorporating knowledge from the newly provided document. RAG can be used with thousands of documents, but this demo is limited to just one txt file.
124
  """)
125
 
126
+ default_text_file = "Oppenheimer-movie-wiki.txt"
127
+ default_retriever = prepare_vector_store_retriever(default_text_file)
128
+
129
+ text_file = gr.State(default_text_file)
130
+
131
+ gr.Markdown("## Upload a txt file or Use the Default 'Oppenheimer-movie-wiki.txt' that has already been loaded")
132
+
133
+ file_name = gr.Textbox(label="Loaded text file", value=default_text_file, lines=1, interactive=False)
134
+ upload_button = gr.UploadButton(
135
+ label="Click to upload a text file",
136
+ file_types=["text"],
137
+ file_count="single"
138
+ )
139
+ upload_button.upload(upload_file, upload_button, [file_name, text_file])
140
+
141
+ gr.Markdown("## Enter your question")
142
+ tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")
143
+
144
+ with gr.Row():
145
+ with gr.Column():
146
+ ques = gr.Textbox(label="Question", placeholder="Enter text here", lines=3)
147
+ with gr.Column():
148
+ ans = gr.Textbox(label="Answer", lines=4, interactive=False)
149
+ with gr.Row():
150
+ with gr.Column():
151
+ btn = gr.Button("Submit")
152
+ with gr.Column():
153
+ clear = gr.ClearButton([ques, ans])
154
+
155
+ btn.click(fn=generate, inputs=[ques, ans, text_file, tokens_slider], outputs=[ans])
156
+ examples = gr.Examples(
 
 
 
 
 
157
  examples=[
158
  "Who portrayed J. Robert Oppenheimer in the new Oppenheimer movie?",
159
  "In the plot of the movie, why did Lewis Strauss resent Robert Oppenheimer?"
 
161
  inputs=[ques],
162
  )
163
 
164
+ demo.queue().launch()