Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import gradio as gr | |
from threading import Thread | |
from huggingface_hub import login | |
# 从环境变量中获取 Hugging Face token | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
if HF_TOKEN: | |
print("使用环境变量中的 HF_TOKEN 登录") | |
login(token=HF_TOKEN) | |
else: | |
print("警告: 未找到 HF_TOKEN 环境变量") | |
# 模型配置 | |
MODEL_PATH = "QLWD/RepoShiled-7b-AWQ" # 量化模型路径 | |
# 定义界面标题和描述 | |
TITLE = "<h1><center>漏洞检测 AWQ量化模型测试</center></h1>" | |
DESCRIPTION = f""" | |
<h3>模型: <a href="https://huggingface.co/{MODEL_PATH}">漏洞检测 AWQ量化模型</a></h3> | |
<center> | |
<p>测试AWQ量化模型的生成效果。</p> | |
</center> | |
""" | |
PLACEHOLDER = """ | |
<center> | |
<p>请输入您要分析的代码...</p> | |
</center> | |
""" | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
""" | |
device = "cuda" | |
# 加载量化后的模型和tokenizer | |
print("正在加载模型...") | |
try: | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_PATH, | |
use_fast=False, | |
trust_remote_code=True, | |
token=HF_TOKEN # 添加 token | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_PATH, | |
device_map="auto", | |
trust_remote_code=True, | |
token=HF_TOKEN # 添加 token | |
) | |
print("模型加载成功!") | |
except Exception as e: | |
print(f"模型加载失败: {str(e)}") | |
raise e | |
def format_chat(system_prompt, history, message): | |
formatted_chat = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" | |
for prompt, answer in history: | |
formatted_chat += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n" | |
formatted_chat += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" | |
return formatted_chat | |
def stream_chat( | |
message: str, | |
history: list, | |
system_prompt: str, | |
temperature: float = 0.3, | |
max_new_tokens: int = 256, | |
top_p: float = 1.0, | |
top_k: int = 20, | |
repetition_penalty: float = 1.2, | |
): | |
print(f'message: {message}') | |
print(f'history: {history}') | |
formatted_prompt = format_chat(system_prompt, history, message) | |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=5000.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=inputs.input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=False if temperature == 0 else True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
streamer=streamer, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
if "<|endoftext|>" in buffer: | |
yield buffer.split("<|endoftext|>")[0] | |
break | |
yield buffer | |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) | |
SYSTEM_PROMPT = '''你是一位代码审计和漏洞修复专家,请仔细分析下面提供的代码,扫描并输出所有存在的漏洞和潜在的风险。每个漏洞或风险之间用分隔符 "--------" 隔开,报告内容左对齐。 | |
从高危到低危的顺序来列出漏洞和风险,每个漏洞或风险的格式如下: | |
- **类型**:明确描述漏洞的类型或名称(如果已经有对应名称),或潜在的风险类型(如资源泄露、边界条件问题等)。 | |
- **风险等级**:根据漏洞或风险的严重性进行评级(如高危、中危、低危)。 | |
- **漏洞/风险描述**:以专业的角度详细解释漏洞的技术细节和成因,或描述潜在的风险。 | |
- **影响**:说明该漏洞或风险可能对系统、数据或用户造成的具体影响。 | |
- **修复建议**:提供修复该漏洞或风险的具体步骤或建议(不是给出修复代码,而是修复的实现方法)。 | |
- **漏洞所在的代码段**:给出代码中存在漏洞的具体位置和代码段(如适用)。 | |
- **修复的代码段**:给出修复漏洞的替换代码段,以便开发者使用(如适用)。 | |
请确保扫描并**输出所有**漏洞和风险,请确保扫描并**输出所有你能够笃定和大概率存在的**漏洞和风险。 | |
分隔符 "--------" 用于每个漏洞或风险之间。''' | |
with gr.Blocks(css=CSS, theme="soft") as demo: | |
gr.HTML(TITLE) | |
gr.HTML(DESCRIPTION) | |
gr.DuplicateButton(value="复制此 Space 进行私有部署", elem_classes="duplicate-button") | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ 参数设置", open=False, render=False), | |
additional_inputs=[ | |
gr.Textbox( | |
value=SYSTEM_PROMPT, | |
label="系统提示词", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.1, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=8192, | |
step=1, | |
value=8192, | |
label="最大生成长度", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="Top-p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=20, | |
label="Top-k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="重复惩罚", | |
render=False, | |
), | |
], | |
examples=None, | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |