Commit
·
91b987a
1
Parent(s):
9c94c47
Fix indentation error in utils.py
Browse files
utils.py
CHANGED
@@ -2,26 +2,73 @@ import whisper
|
|
2 |
from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import os
|
4 |
import tempfile
|
|
|
5 |
|
6 |
# Load Whisper model
|
7 |
model = whisper.load_model("base")
|
8 |
|
9 |
def process_video(video_file, language):
|
10 |
-
# Save uploaded video to a temporary file
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
|
15 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
print("Transcribing video to English...")
|
17 |
-
result = model.transcribe(
|
18 |
|
19 |
-
# Translation logic
|
20 |
segments = []
|
21 |
if language == "English":
|
22 |
segments = result["segments"]
|
23 |
else:
|
24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Create SRT file
|
27 |
srt_path = os.path.join(tempfile.gettempdir(), "subtitles.srt")
|
@@ -34,4 +81,10 @@ def process_video(video_file, language):
|
|
34 |
return srt_path
|
35 |
|
36 |
except Exception as e:
|
37 |
-
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import os
|
4 |
import tempfile
|
5 |
+
import subprocess
|
6 |
|
7 |
# Load Whisper model
|
8 |
model = whisper.load_model("base")
|
9 |
|
10 |
def process_video(video_file, language):
|
11 |
+
# Save uploaded video to a temporary file
|
12 |
+
temp_dir = tempfile.gettempdir()
|
13 |
+
video_path = os.path.join(temp_dir, "input_video") # No extension
|
14 |
+
output_video_path = os.path.join(temp_dir, "converted_video.mp4") # Convert to MP4 for compatibility
|
15 |
|
16 |
try:
|
17 |
+
# Save the uploaded file
|
18 |
+
with open(video_path, "wb") as f:
|
19 |
+
f.write(video_file.read())
|
20 |
+
|
21 |
+
# Convert the video to MP4 using ffmpeg
|
22 |
+
print("Converting video to MP4...")
|
23 |
+
subprocess.run(["ffmpeg", "-i", video_path, "-c:v", "libx264", "-preset", "fast", output_video_path], check=True)
|
24 |
+
|
25 |
+
# Transcribe the video
|
26 |
print("Transcribing video to English...")
|
27 |
+
result = model.transcribe(output_video_path, language="en")
|
28 |
|
29 |
+
# Translation logic
|
30 |
segments = []
|
31 |
if language == "English":
|
32 |
segments = result["segments"]
|
33 |
else:
|
34 |
+
# Define translation models
|
35 |
+
model_map = {
|
36 |
+
"Hindi": "Helsinki-NLP/opus-mt-en-hi",
|
37 |
+
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
38 |
+
"French": "Helsinki-NLP/opus-mt-en-fr",
|
39 |
+
"German": "Helsinki-NLP/opus-mt-en-de",
|
40 |
+
"Telugu": "facebook/nllb-200-distilled-600M",
|
41 |
+
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
42 |
+
"Russian": "Helsinki-NLP/opus-mt-en-ru",
|
43 |
+
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
44 |
+
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
|
45 |
+
"Japanese": "Helsinki-NLP/opus-mt-en-jap"
|
46 |
+
}
|
47 |
+
model_name = model_map.get(language)
|
48 |
+
if not model_name:
|
49 |
+
return f"Unsupported language: {language}"
|
50 |
+
|
51 |
+
if language == "Telugu":
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
53 |
+
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
54 |
+
tgt_lang = "tel_Telu"
|
55 |
+
print(f"Translating to Telugu using NLLB-200 Distilled...")
|
56 |
+
for segment in result["segments"]:
|
57 |
+
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
58 |
+
translated_tokens = translation_model.generate(
|
59 |
+
**inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang)
|
60 |
+
)
|
61 |
+
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
62 |
+
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
63 |
+
else:
|
64 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
65 |
+
translation_model = MarianMTModel.from_pretrained(model_name)
|
66 |
+
print(f"Translating to {language}...")
|
67 |
+
for segment in result["segments"]:
|
68 |
+
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
69 |
+
translated = translation_model.generate(**inputs)
|
70 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
71 |
+
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
72 |
|
73 |
# Create SRT file
|
74 |
srt_path = os.path.join(tempfile.gettempdir(), "subtitles.srt")
|
|
|
81 |
return srt_path
|
82 |
|
83 |
except Exception as e:
|
84 |
+
return f"Error: {str(e)}"
|
85 |
+
finally:
|
86 |
+
# Clean up temporary files
|
87 |
+
if os.path.exists(video_path):
|
88 |
+
os.remove(video_path)
|
89 |
+
if os.path.exists(output_video_path):
|
90 |
+
os.remove(output_video_path)
|