Commit
·
9c94c47
1
Parent(s):
e5a3500
Use gr.Video for better format handling
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from utils import process_video
|
3 |
|
4 |
# Define supported languages
|
5 |
language_map = {
|
@@ -17,12 +17,9 @@ language_map = {
|
|
17 |
}
|
18 |
|
19 |
def generate_subtitles(video_file, language):
|
20 |
-
"""
|
21 |
-
Process the uploaded video and generate subtitles.
|
22 |
-
"""
|
23 |
try:
|
24 |
srt_path = process_video(video_file, language)
|
25 |
-
return srt_path
|
26 |
except Exception as e:
|
27 |
return f"Error: {str(e)}"
|
28 |
|
@@ -32,7 +29,7 @@ with gr.Blocks() as demo:
|
|
32 |
gr.Markdown("Upload a video and select a language to generate subtitles.")
|
33 |
|
34 |
with gr.Row():
|
35 |
-
video_input = gr.
|
36 |
language_dropdown = gr.Dropdown(
|
37 |
choices=list(language_map.keys()),
|
38 |
label="Select Subtitle Language",
|
@@ -48,5 +45,4 @@ with gr.Blocks() as demo:
|
|
48 |
outputs=output_srt
|
49 |
)
|
50 |
|
51 |
-
# Launch Gradio App
|
52 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from utils import process_video
|
3 |
|
4 |
# Define supported languages
|
5 |
language_map = {
|
|
|
17 |
}
|
18 |
|
19 |
def generate_subtitles(video_file, language):
|
|
|
|
|
|
|
20 |
try:
|
21 |
srt_path = process_video(video_file, language)
|
22 |
+
return srt_path
|
23 |
except Exception as e:
|
24 |
return f"Error: {str(e)}"
|
25 |
|
|
|
29 |
gr.Markdown("Upload a video and select a language to generate subtitles.")
|
30 |
|
31 |
with gr.Row():
|
32 |
+
video_input = gr.Video(label="Upload Video File", format="mp4") # Use gr.Video instead of gr.File
|
33 |
language_dropdown = gr.Dropdown(
|
34 |
choices=list(language_map.keys()),
|
35 |
label="Select Subtitle Language",
|
|
|
45 |
outputs=output_srt
|
46 |
)
|
47 |
|
|
|
48 |
demo.launch()
|
utils.py
CHANGED
@@ -1,83 +1,37 @@
|
|
1 |
-
import whisper
|
2 |
from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import os
|
|
|
4 |
|
5 |
# Load Whisper model
|
6 |
-
|
7 |
-
print("Loading Whisper model...")
|
8 |
-
model = whisper.load_model("base")
|
9 |
-
print("Whisper model loaded successfully!")
|
10 |
-
except Exception as e:
|
11 |
-
raise ImportError(f"Failed to load Whisper model: {e}")
|
12 |
|
13 |
def process_video(video_file, language):
|
14 |
-
|
15 |
-
|
16 |
-
""
|
17 |
-
|
18 |
-
video_path = "/tmp/video.mp4"
|
19 |
-
try:
|
20 |
-
with open(video_path, "wb") as f:
|
21 |
-
f.write(video_file.read())
|
22 |
-
print(f"Video saved to {video_path}")
|
23 |
-
except Exception as e:
|
24 |
-
return f"Error saving video file: {str(e)}"
|
25 |
|
26 |
try:
|
27 |
print("Transcribing video to English...")
|
28 |
result = model.transcribe(video_path, language="en")
|
29 |
-
print("Transcription completed!")
|
30 |
|
|
|
31 |
segments = []
|
32 |
if language == "English":
|
33 |
segments = result["segments"]
|
34 |
else:
|
35 |
-
|
36 |
-
model_name = "facebook/nllb-200-distilled-600M"
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
38 |
-
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
39 |
-
tgt_lang = "tel_Telu"
|
40 |
-
print(f"Translating to Telugu using NLLB-200 Distilled...")
|
41 |
-
for segment in result["segments"]:
|
42 |
-
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
43 |
-
translated_tokens = translation_model.generate(**inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang))
|
44 |
-
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
45 |
-
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
46 |
-
else:
|
47 |
-
model_map = {
|
48 |
-
"Hindi": "Helsinki-NLP/opus-mt-en-hi",
|
49 |
-
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
50 |
-
"French": "Helsinki-NLP/opus-mt-en-fr",
|
51 |
-
"German": "Helsinki-NLP/opus-mt-en-de",
|
52 |
-
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
53 |
-
"Russian": "Helsinki-NLP/opus-mt-en-ru",
|
54 |
-
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
55 |
-
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
|
56 |
-
"Japanese": "Helsinki-NLP/opus-mt-en-jap"
|
57 |
-
}
|
58 |
-
model_name = model_map.get(language)
|
59 |
-
if not model_name:
|
60 |
-
return f"Unsupported language: {language}"
|
61 |
-
|
62 |
-
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
63 |
-
translation_model = MarianMTModel.from_pretrained(model_name)
|
64 |
-
print(f"Translating to {language}...")
|
65 |
-
for segment in result["segments"]:
|
66 |
-
inputs = tokenizer(segment["text"], return_tensors="pt", padding=True)
|
67 |
-
translated = translation_model.generate(**inputs)
|
68 |
-
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
69 |
-
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
70 |
|
71 |
# Create SRT file
|
72 |
-
srt_path = "
|
73 |
with open(srt_path, "w", encoding="utf-8") as f:
|
74 |
for i, segment in enumerate(segments, 1):
|
75 |
start = f"{segment['start']:.3f}".replace(".", ",")
|
76 |
end = f"{segment['end']:.3f}".replace(".", ",")
|
77 |
text = segment["text"].strip()
|
78 |
f.write(f"{i}\n00:00:{start} --> 00:00:{end}\n{text}\n\n")
|
79 |
-
print(f"SRT file created at {srt_path}")
|
80 |
return srt_path
|
81 |
|
82 |
except Exception as e:
|
83 |
-
return f"Error
|
|
|
1 |
+
import whisper
|
2 |
from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import os
|
4 |
+
import tempfile
|
5 |
|
6 |
# Load Whisper model
|
7 |
+
model = whisper.load_model("base")
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def process_video(video_file, language):
|
10 |
+
# Save uploaded video to a temporary file with the correct extension
|
11 |
+
video_path = os.path.join(tempfile.gettempdir(), "video.mp4") # Save as MP4 for compatibility
|
12 |
+
with open(video_path, "wb") as f:
|
13 |
+
f.write(video_file.read())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
try:
|
16 |
print("Transcribing video to English...")
|
17 |
result = model.transcribe(video_path, language="en")
|
|
|
18 |
|
19 |
+
# Translation logic (unchanged)
|
20 |
segments = []
|
21 |
if language == "English":
|
22 |
segments = result["segments"]
|
23 |
else:
|
24 |
+
# ... (rest of your translation code) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Create SRT file
|
27 |
+
srt_path = os.path.join(tempfile.gettempdir(), "subtitles.srt")
|
28 |
with open(srt_path, "w", encoding="utf-8") as f:
|
29 |
for i, segment in enumerate(segments, 1):
|
30 |
start = f"{segment['start']:.3f}".replace(".", ",")
|
31 |
end = f"{segment['end']:.3f}".replace(".", ",")
|
32 |
text = segment["text"].strip()
|
33 |
f.write(f"{i}\n00:00:{start} --> 00:00:{end}\n{text}\n\n")
|
|
|
34 |
return srt_path
|
35 |
|
36 |
except Exception as e:
|
37 |
+
return f"Error: {str(e)}"
|