Update utils.py
Browse files
utils.py
CHANGED
@@ -7,25 +7,27 @@ import subprocess
|
|
7 |
# Load Whisper model
|
8 |
model = whisper.load_model("base")
|
9 |
|
10 |
-
def process_video(video_path, language):
|
11 |
output_video_path = os.path.join(tempfile.gettempdir(), "converted_video.mp4")
|
12 |
srt_path = os.path.join(tempfile.gettempdir(), "subtitles.srt")
|
13 |
|
14 |
try:
|
15 |
# Convert video to MP4 using ffmpeg
|
16 |
-
|
|
|
17 |
subprocess.run(
|
18 |
["ffmpeg", "-i", video_path, "-c:v", "libx264", "-preset", "fast", output_video_path],
|
19 |
-
check=True,
|
20 |
stdout=subprocess.PIPE,
|
21 |
stderr=subprocess.PIPE
|
22 |
)
|
23 |
-
print("Video converted successfully!")
|
24 |
|
25 |
# Transcribe video
|
26 |
-
|
|
|
27 |
result = model.transcribe(output_video_path, language="en")
|
28 |
-
|
|
|
29 |
|
30 |
# Translation logic
|
31 |
segments = []
|
@@ -46,9 +48,9 @@ def process_video(video_path, language): # Accept file path, not file object
|
|
46 |
}
|
47 |
model_name = model_map.get(language)
|
48 |
if not model_name:
|
49 |
-
return
|
50 |
|
51 |
-
|
52 |
if language == "Telugu":
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
@@ -70,13 +72,16 @@ def process_video(video_path, language): # Accept file path, not file object
|
|
70 |
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
71 |
|
72 |
# Create SRT file
|
|
|
|
|
73 |
with open(srt_path, "w", encoding="utf-8") as f:
|
74 |
for i, segment in enumerate(segments, 1):
|
75 |
start = f"{segment['start']:.3f}".replace(".", ",")
|
76 |
end = f"{segment['end']:.3f}".replace(".", ",")
|
77 |
text = segment["text"].strip()
|
78 |
f.write(f"{i}\n00:00:{start} --> 00:00:{end}\n{text}\n\n")
|
79 |
-
|
|
|
80 |
return srt_path
|
81 |
|
82 |
except subprocess.CalledProcessError as e:
|
|
|
7 |
# Load Whisper model
|
8 |
model = whisper.load_model("base")
|
9 |
|
10 |
+
def process_video(video_path, language, progress=None):
|
11 |
output_video_path = os.path.join(tempfile.gettempdir(), "converted_video.mp4")
|
12 |
srt_path = os.path.join(tempfile.gettempdir(), "subtitles.srt")
|
13 |
|
14 |
try:
|
15 |
# Convert video to MP4 using ffmpeg
|
16 |
+
if progress:
|
17 |
+
progress(0.2, desc="π Converting video to MP4...")
|
18 |
subprocess.run(
|
19 |
["ffmpeg", "-i", video_path, "-c:v", "libx264", "-preset", "fast", output_video_path],
|
20 |
+
check=True,
|
21 |
stdout=subprocess.PIPE,
|
22 |
stderr=subprocess.PIPE
|
23 |
)
|
|
|
24 |
|
25 |
# Transcribe video
|
26 |
+
if progress:
|
27 |
+
progress(0.4, desc="π Transcribing audio...")
|
28 |
result = model.transcribe(output_video_path, language="en")
|
29 |
+
if progress:
|
30 |
+
progress(0.6, desc="π Translating subtitles...")
|
31 |
|
32 |
# Translation logic
|
33 |
segments = []
|
|
|
48 |
}
|
49 |
model_name = model_map.get(language)
|
50 |
if not model_name:
|
51 |
+
return None
|
52 |
|
53 |
+
# Load translation model
|
54 |
if language == "Telugu":
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
72 |
segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]})
|
73 |
|
74 |
# Create SRT file
|
75 |
+
if progress:
|
76 |
+
progress(0.8, desc="π Generating SRT file...")
|
77 |
with open(srt_path, "w", encoding="utf-8") as f:
|
78 |
for i, segment in enumerate(segments, 1):
|
79 |
start = f"{segment['start']:.3f}".replace(".", ",")
|
80 |
end = f"{segment['end']:.3f}".replace(".", ",")
|
81 |
text = segment["text"].strip()
|
82 |
f.write(f"{i}\n00:00:{start} --> 00:00:{end}\n{text}\n\n")
|
83 |
+
if progress:
|
84 |
+
progress(1.0, desc="β
Done!")
|
85 |
return srt_path
|
86 |
|
87 |
except subprocess.CalledProcessError as e:
|