Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
@@ -1,5 +1,136 @@
|
|
1 |
import torch
|
|
|
2 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
def compute_ca_loss(attn_maps_mid, attn_maps_up, bboxes, object_positions):
|
4 |
loss = 0
|
5 |
object_number = len(bboxes)
|
|
|
1 |
import torch
|
2 |
+
from torch import nn
|
3 |
import math
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import pandas as pd
|
8 |
+
import csv
|
9 |
+
import pickle
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from torch.nn import BCELoss
|
13 |
+
|
14 |
+
from torch.nn import functional as F
|
15 |
+
import math
|
16 |
+
import numbers
|
17 |
+
from typing import List
|
18 |
+
|
19 |
+
def get_all_attention_64(attn_maps_down, attn_maps_mid , attn_maps_up, res = 16):
|
20 |
+
result = []
|
21 |
+
|
22 |
+
for attn_map_integrated in attn_maps_up:
|
23 |
+
if attn_map_integrated == []: continue
|
24 |
+
attn_map = attn_map_integrated.squeeze(0)
|
25 |
+
# print(attn_map.shape)
|
26 |
+
b, i, j = attn_map.shape
|
27 |
+
H = W = int(math.sqrt(i))
|
28 |
+
# print(H)
|
29 |
+
|
30 |
+
if H == res:
|
31 |
+
item = attn_map.reshape(-1, res, res, attn_map.shape[-1] )
|
32 |
+
item = item.permute(0, 3, 1, 2)
|
33 |
+
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
|
34 |
+
result.append(item)
|
35 |
+
for attn_map_integrated in attn_maps_mid:
|
36 |
+
attn_map = attn_map_integrated.squeeze(0)
|
37 |
+
b, i, j = attn_map.shape
|
38 |
+
H = W = int(math.sqrt(i))
|
39 |
+
# print(H)
|
40 |
+
if (H==8):
|
41 |
+
item = attn_map.reshape(-1, 8, 8, attn_map.shape[-1] )
|
42 |
+
item = item.permute(0, 3, 1, 2)
|
43 |
+
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
|
44 |
+
result.append(item)
|
45 |
+
|
46 |
+
for attn_map_integrated in attn_maps_down:
|
47 |
+
if attn_map_integrated == []: continue
|
48 |
+
attn_map = attn_map_integrated.squeeze(0)
|
49 |
+
if attn_map == []: continue
|
50 |
+
b, i, j = attn_map.shape
|
51 |
+
H = W = int(math.sqrt(i))
|
52 |
+
|
53 |
+
if H == res:
|
54 |
+
item = attn_map.reshape(-1, res, res, attn_map.shape[-1] )
|
55 |
+
item = item.permute(0, 3, 1, 2)
|
56 |
+
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
|
57 |
+
result.append(item)
|
58 |
+
# print('RES LENGTH', len(result))
|
59 |
+
|
60 |
+
# for maps in result:
|
61 |
+
# print(maps.shape)
|
62 |
+
result = torch.cat(result, dim=0)
|
63 |
+
result = result.sum(0) / result.shape[0]
|
64 |
+
return result
|
65 |
+
|
66 |
+
|
67 |
+
def compute_loco_v2(attn_maps_down, attn_maps_mid, attn_maps_up, bboxes, object_positions, smooth_attn=True, topk = 0.8):
|
68 |
+
|
69 |
+
loss = 0.
|
70 |
+
pad_loss = 0.
|
71 |
+
total_fg_map = torch.zeros(size=(64, 64)).cuda()
|
72 |
+
|
73 |
+
alpha = 0.2
|
74 |
+
beta = 0.8
|
75 |
+
|
76 |
+
object_number = len(bboxes)
|
77 |
+
if object_number == 0:
|
78 |
+
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
|
79 |
+
attn16 = get_all_attention_64(attn_maps_down[-1]+ attn_maps_down[-2], attn_maps_mid, attn_maps_up[0]+attn_maps_up[1], 16)
|
80 |
+
all_attn = [attn16]
|
81 |
+
max_loss = 0
|
82 |
+
|
83 |
+
|
84 |
+
for attn_map in all_attn:
|
85 |
+
|
86 |
+
sum_in = 0.
|
87 |
+
sum_out = 0.
|
88 |
+
|
89 |
+
i, j, k = attn_map.shape
|
90 |
+
H = W = i
|
91 |
+
for obj_idx in range(object_number):
|
92 |
+
obj_loss = 0
|
93 |
+
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
|
94 |
+
for obj_box in bboxes[obj_idx]:
|
95 |
+
|
96 |
+
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
|
97 |
+
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
|
98 |
+
mask[y_min: y_max, x_min: x_max] = 1
|
99 |
+
total_fg_map[y_min: y_max, x_min: x_max] = 1
|
100 |
+
|
101 |
+
for obj_position in [object_positions[obj_idx]]:
|
102 |
+
|
103 |
+
ca_map_obj = attn_map[:, :, obj_position].sum(-1)
|
104 |
+
|
105 |
+
ca_map_obj = ca_map_obj.reshape(H, W)
|
106 |
+
norm_ca_map_obj = ca_map_obj / ca_map_obj.max()
|
107 |
+
norm_ca_map_obj = norm_ca_map_obj.reshape(H, W)
|
108 |
+
|
109 |
+
sum_in += (norm_ca_map_obj * mask).sum()
|
110 |
+
sum_out += (norm_ca_map_obj * (1 - mask)).sum()
|
111 |
+
|
112 |
+
loss += (obj_loss/len(object_positions[obj_idx]))
|
113 |
+
|
114 |
+
sot_map = attn_map[:, :, 0].reshape(H, W)
|
115 |
+
eot_map = attn_map[:, :, -1].reshape(H, W)
|
116 |
+
|
117 |
+
norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
|
118 |
+
norm_eot_map = eot_map / eot_map.max()
|
119 |
+
|
120 |
+
|
121 |
+
pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
|
122 |
+
|
123 |
+
total_fg_mask = total_fg_map
|
124 |
+
fg_map = pad_map * total_fg_mask
|
125 |
+
|
126 |
+
bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.to(torch.float16).reshape(-1)), fg_map.to(torch.float16).reshape(-1))
|
127 |
+
|
128 |
+
pad_loss += bce_loss
|
129 |
+
|
130 |
+
loss += (1 - sum_in / (sum_in + sum_out)) ** 2
|
131 |
+
|
132 |
+
return loss + alpha * pad_loss
|
133 |
+
|
134 |
def compute_ca_loss(attn_maps_mid, attn_maps_up, bboxes, object_positions):
|
135 |
loss = 0
|
136 |
object_number = len(bboxes)
|