Pusheen's picture
Upload 139 files
281df87 verified
raw
history blame
7.23 kB
import math
import torch
from ldm.models.diffusion.gaussian_smoothing import GaussianSmoothing
from torch.nn import functional as F
from torchvision.utils import save_image
def loss_one_att_outside(attn_map,bboxes, object_positions,t):
# loss = torch.tensor(0).to('cuda')
loss = 0
object_number = len(bboxes)
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# if t== 20: import pdb; pdb.set_trace()
for obj_idx in range(object_number):
for obj_box in bboxes[obj_idx]:
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1.
mask_out = 1. - mask
index = (mask == 1.).nonzero(as_tuple=False)
index_in_key = index[:,0]* H + index[:, 1]
att_box = torch.zeros_like(attn_map)
att_box[:,index_in_key,:] = attn_map[:,index_in_key,:]
att_box = att_box.sum(axis=1) / index_in_key.shape[0]
att_box = att_box.reshape(-1, H, H)
activation_value = (att_box* mask_out).reshape(b, -1).sum(dim=-1) #/ att_box.reshape(b, -1).sum(dim=-1)
loss += torch.mean(activation_value)
return loss / object_number
def caculate_loss_self_att(self_first, self_second, self_third, bboxes, object_positions, t, list_res=[256], smooth_att = True,sigma=0.5,kernel_size=3 ):
all_attn = get_all_self_att(self_first, self_second, self_third)
cnt = 0
total_loss = 0
for res in list_res:
attn_maps = all_attn[res]
for attn in attn_maps:
total_loss += loss_one_att_outside(attn, bboxes, object_positions,t)
cnt += 1
return total_loss /cnt
def get_all_self_att(self_first, self_second, self_third):
result = {256:[], 1024:[], 4096:[], 64:[], 94:[],1054:[] ,286:[],4126:[] }
# import pdb; pdb.set_trace()
all_att = [self_first, self_second, self_third]
for self_att in all_att:
for att in self_att:
if att != []:
temp = att[0]
for attn_map in temp:
current_res = attn_map.shape[1]
# print(current_res)
result[current_res].append(attn_map)
return result
def get_all_attention(attn_maps_mid, attn_maps_up , attn_maps_down, res):
result = []
for attn_map_integrated in attn_maps_up:
if attn_map_integrated == []: continue
attn_map = attn_map_integrated[0][0]
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if H == res:
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
for attn_map_integrated in attn_maps_mid:
# for attn_map_integrated in attn_maps_mid:
attn_map = attn_map_integrated[0]
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if (H==res):
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
# import pdb; pdb.set_trace()
for attn_map_integrated in attn_maps_down:
if attn_map_integrated == []: continue
attn_map = attn_map_integrated[0][0]
if attn_map == []: continue
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if (H==res):
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
result = torch.cat(result, dim=0)
result = result.sum(0) / result.shape[0]
return result
def caculate_loss_att_fixed_cnt(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
attn16 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, res)
# attn32 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 32)
# attn64 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 64)
# attn8 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 8)
all_attn = [attn16]
obj_number = len(bboxes)
total_loss = 0
# import pdb; pdb.set_trace()
for attn in all_attn[0:1]:
attn_text = attn[:, :, 1:-1]
attn_text *= 100
attn_text = torch.nn.functional.softmax(attn_text, dim=-1)
current_res = attn.shape[0]
H = W = current_res
# if t == 49: import pdb; pdb.set_trace()
for obj_idx in range(obj_number):
num_boxes= 0
for obj_position in object_positions[obj_idx]:
true_obj_position = obj_position - 1
att_map_obj = attn_text[:,:, true_obj_position]
if smooth_att:
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
input = F.pad(att_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
att_map_obj = smoothing(input).squeeze(0).squeeze(0)
other_att_map_obj = att_map_obj.clone()
att_copy = att_map_obj.clone()
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
if att_map_obj[y_min: y_max, x_min: x_max].numel() == 0:
max_inside=1.
else:
max_inside = att_map_obj[y_min: y_max, x_min: x_max].max()
total_loss += 1. - max_inside
# find max outside the box, find in the other boxes
att_copy[y_min: y_max, x_min: x_max] = 0.
other_att_map_obj[y_min: y_max, x_min: x_max] = 0.
for obj_outside in range(obj_number):
if obj_outside != obj_idx:
for obj_out_box in bboxes[obj_outside]:
x_min_out, y_min_out, x_max_out, y_max_out = int(obj_out_box[0] * W), \
int(obj_out_box[1] * H), int(obj_out_box[2] * W), int(obj_out_box[3] * H)
# att_copy[y_min: y_max, x_min: x_max] = 0.
if other_att_map_obj[y_min_out: y_max_out, x_min_out: x_max_out].numel() == 0:
max_outside_one= 0
else:
max_outside_one = other_att_map_obj[y_min_out: y_max_out, x_min_out: x_max_out].max()
# max_outside = max(max_outside,max_outside_one )
att_copy[y_min_out: y_max_out, x_min_out: x_max_out] = 0.
total_loss += max_outside_one
max_background = att_copy.max()
total_loss += len(bboxes[obj_idx]) *max_background /2.
return total_loss/obj_number