Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from ldm.models.diffusion.gaussian_smoothing import GaussianSmoothing | |
from torch.nn import functional as F | |
from torchvision.utils import save_image | |
def loss_one_att_outside(attn_map,bboxes, object_positions,t): | |
# loss = torch.tensor(0).to('cuda') | |
loss = 0 | |
object_number = len(bboxes) | |
b, i, j = attn_map.shape | |
H = W = int(math.sqrt(i)) | |
# if t== 20: import pdb; pdb.set_trace() | |
for obj_idx in range(object_number): | |
for obj_box in bboxes[obj_idx]: | |
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W)) | |
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \ | |
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H) | |
mask[y_min: y_max, x_min: x_max] = 1. | |
mask_out = 1. - mask | |
index = (mask == 1.).nonzero(as_tuple=False) | |
index_in_key = index[:,0]* H + index[:, 1] | |
att_box = torch.zeros_like(attn_map) | |
att_box[:,index_in_key,:] = attn_map[:,index_in_key,:] | |
att_box = att_box.sum(axis=1) / index_in_key.shape[0] | |
att_box = att_box.reshape(-1, H, H) | |
activation_value = (att_box* mask_out).reshape(b, -1).sum(dim=-1) #/ att_box.reshape(b, -1).sum(dim=-1) | |
loss += torch.mean(activation_value) | |
return loss / object_number | |
def caculate_loss_self_att(self_first, self_second, self_third, bboxes, object_positions, t, list_res=[256], smooth_att = True,sigma=0.5,kernel_size=3 ): | |
all_attn = get_all_self_att(self_first, self_second, self_third) | |
cnt = 0 | |
total_loss = 0 | |
for res in list_res: | |
attn_maps = all_attn[res] | |
for attn in attn_maps: | |
total_loss += loss_one_att_outside(attn, bboxes, object_positions,t) | |
cnt += 1 | |
return total_loss /cnt | |
def get_all_self_att(self_first, self_second, self_third): | |
result = {256:[], 1024:[], 4096:[], 64:[], 94:[],1054:[] ,286:[],4126:[] } | |
# import pdb; pdb.set_trace() | |
all_att = [self_first, self_second, self_third] | |
for self_att in all_att: | |
for att in self_att: | |
if att != []: | |
temp = att[0] | |
for attn_map in temp: | |
current_res = attn_map.shape[1] | |
# print(current_res) | |
result[current_res].append(attn_map) | |
return result | |
def get_all_attention(attn_maps_mid, attn_maps_up , attn_maps_down, res): | |
result = [] | |
for attn_map_integrated in attn_maps_up: | |
if attn_map_integrated == []: continue | |
attn_map = attn_map_integrated[0][0] | |
b, i, j = attn_map.shape | |
H = W = int(math.sqrt(i)) | |
# print(H) | |
if H == res: | |
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] )) | |
for attn_map_integrated in attn_maps_mid: | |
# for attn_map_integrated in attn_maps_mid: | |
attn_map = attn_map_integrated[0] | |
b, i, j = attn_map.shape | |
H = W = int(math.sqrt(i)) | |
# print(H) | |
if (H==res): | |
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] )) | |
# import pdb; pdb.set_trace() | |
for attn_map_integrated in attn_maps_down: | |
if attn_map_integrated == []: continue | |
attn_map = attn_map_integrated[0][0] | |
if attn_map == []: continue | |
b, i, j = attn_map.shape | |
H = W = int(math.sqrt(i)) | |
# print(H) | |
if (H==res): | |
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] )) | |
result = torch.cat(result, dim=0) | |
result = result.sum(0) / result.shape[0] | |
return result | |
def caculate_loss_att_fixed_cnt(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ): | |
attn16 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, res) | |
# attn32 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 32) | |
# attn64 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 64) | |
# attn8 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 8) | |
all_attn = [attn16] | |
obj_number = len(bboxes) | |
total_loss = 0 | |
# import pdb; pdb.set_trace() | |
for attn in all_attn[0:1]: | |
attn_text = attn[:, :, 1:-1] | |
attn_text *= 100 | |
attn_text = torch.nn.functional.softmax(attn_text, dim=-1) | |
current_res = attn.shape[0] | |
H = W = current_res | |
# if t == 49: import pdb; pdb.set_trace() | |
for obj_idx in range(obj_number): | |
num_boxes= 0 | |
for obj_position in object_positions[obj_idx]: | |
true_obj_position = obj_position - 1 | |
att_map_obj = attn_text[:,:, true_obj_position] | |
if smooth_att: | |
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda() | |
input = F.pad(att_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect') | |
att_map_obj = smoothing(input).squeeze(0).squeeze(0) | |
other_att_map_obj = att_map_obj.clone() | |
att_copy = att_map_obj.clone() | |
for obj_box in bboxes[obj_idx]: | |
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \ | |
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H) | |
if att_map_obj[y_min: y_max, x_min: x_max].numel() == 0: | |
max_inside=1. | |
else: | |
max_inside = att_map_obj[y_min: y_max, x_min: x_max].max() | |
total_loss += 1. - max_inside | |
# find max outside the box, find in the other boxes | |
att_copy[y_min: y_max, x_min: x_max] = 0. | |
other_att_map_obj[y_min: y_max, x_min: x_max] = 0. | |
for obj_outside in range(obj_number): | |
if obj_outside != obj_idx: | |
for obj_out_box in bboxes[obj_outside]: | |
x_min_out, y_min_out, x_max_out, y_max_out = int(obj_out_box[0] * W), \ | |
int(obj_out_box[1] * H), int(obj_out_box[2] * W), int(obj_out_box[3] * H) | |
# att_copy[y_min: y_max, x_min: x_max] = 0. | |
if other_att_map_obj[y_min_out: y_max_out, x_min_out: x_max_out].numel() == 0: | |
max_outside_one= 0 | |
else: | |
max_outside_one = other_att_map_obj[y_min_out: y_max_out, x_min_out: x_max_out].max() | |
# max_outside = max(max_outside,max_outside_one ) | |
att_copy[y_min_out: y_max_out, x_min_out: x_max_out] = 0. | |
total_loss += max_outside_one | |
max_background = att_copy.max() | |
total_loss += len(bboxes[obj_idx]) *max_background /2. | |
return total_loss/obj_number | |