File size: 13,071 Bytes
281df87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import torch
import numpy as np
from tqdm import tqdm
from functools import partial
from copy import deepcopy
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
import math
from ldm.models.diffusion.loss import  caculate_loss_att_fixed_cnt, caculate_loss_self_att
class PLMSSampler(object):
    def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
        super().__init__()
        self.diffusion = diffusion
        self.model = model
        self.device = diffusion.betas.device
        self.ddpm_num_timesteps = diffusion.num_timesteps
        self.schedule = schedule
        self.alpha_generator_func = alpha_generator_func
        self.set_alpha_scale = set_alpha_scale

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            attr = attr.to(self.device)
        setattr(self, name, attr)

    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False):
        if ddim_eta != 0:
            raise ValueError('ddim_eta must be 0 for PLMS')
        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
        alphas_cumprod = self.diffusion.alphas_cumprod
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)

        self.register_buffer('betas', to_torch(self.diffusion.betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))

        # ddim sampling parameters
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
                                                                                   ddim_timesteps=self.ddim_timesteps,
                                                                                   eta=ddim_eta,verbose=verbose)
        self.register_buffer('ddim_sigmas', ddim_sigmas)
        self.register_buffer('ddim_alphas', ddim_alphas)
        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)


    # @torch.no_grad()
    def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type='SAR_CAR'):
        self.make_schedule(ddim_num_steps=S)
        # import pdb; pdb.set_trace()
        return self.plms_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0, loss_type=loss_type)


    # @torch.no_grad()
    def plms_sampling(self, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type='SAR_CAR'):

        b = shape[0]
        
        img = input["x"]
        if img == None:     
            img = torch.randn(shape, device=self.device)
            input["x"] = img

        time_range = np.flip(self.ddim_timesteps)
        total_steps = self.ddim_timesteps.shape[0]

        old_eps = []

        if self.alpha_generator_func != None:
            alphas = self.alpha_generator_func(len(time_range))

        for i, step in enumerate(time_range):

            # set alpha and restore first conv layer 
            if self.alpha_generator_func != None:
                self.set_alpha_scale(self.model, alphas[i])
                if  alphas[i] == 0:
                    self.model.restore_first_conv_from_SD()

            # run 
            index = total_steps - i - 1
            ts = torch.full((b,), step, device=self.device, dtype=torch.long)
            ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=self.device, dtype=torch.long)

            if mask is not None:
                assert x0 is not None
                img_orig = self.diffusion.q_sample(x0, ts)  
                img = img_orig * mask + (1. - mask) * img
                input["x"] = img
            # three loss types
            if loss_type !=None and loss_type!='standard':
                if input['object_position'] != []:
                    if loss_type=='SAR_CAR':
                        x = self.update_loss_self_cross( input,i, index, ts )
                    elif loss_type=='SAR':
                        x = self.update_only_self( input,i, index, ts )
                    elif loss_type=='CAR':
                        x = self.update_loss_only_cross( input,i, index, ts )
                    input["x"] = x
            img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next)
            input["x"] = img
            old_eps.append(e_t)
            if len(old_eps) >= 4:
                old_eps.pop(0)

        return img
     
    def update_loss_self_cross(self, input,index1, index, ts,type_loss='self_accross' ):
        if index1 < 10:
            loss_scale = 4
            max_iter = 1
        elif index1 < 20:
            loss_scale = 3
            max_iter = 1
        else:
            loss_scale = 1
            max_iter = 1
        
        loss_threshold = 0.1
        max_index = 30
        x = deepcopy(input["x"]) 
        iteration = 0
        loss = torch.tensor(10000)
        input["timesteps"] = ts
        
        print("optimize", index1)
        self.model.train()
        while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
            print('iter', iteration)
            # import pdb; pdb.set_trace()
            x = x.requires_grad_(True)
            input['x'] = x
            e_t,  att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
            bboxes = input['boxes_att']
            object_positions = input['object_position'] 
            loss1 = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes,
                                object_positions=object_positions, t = index1)*loss_scale 
            loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes,
                                object_positions=object_positions, t = index1)*loss_scale
            loss = loss1 + loss2
            print('loss', loss, loss1, loss2)  
            # hh = torch.autograd.backward(loss, retain_graph=True)
            grad_cond = torch.autograd.grad(loss.requires_grad_(True), [x])[0]
            # grad_cond = x.grad 
            x = x - grad_cond
            x = x.detach()
            iteration += 1
            
        
        return x

    def update_loss_only_cross(self, input,index1, index, ts,type_loss='self_accross'):
       
        if index1 < 10:
            loss_scale = 3
            max_iter = 5
        elif index1 < 20:
            loss_scale = 2
            max_iter = 5
        else:
            loss_scale = 1
            max_iter = 1
        loss_threshold = 0.1

        max_index = 30
        x = deepcopy(input["x"]) 
        iteration = 0
        loss = torch.tensor(10000)
        input["timesteps"] = ts
        
        print("optimize", index1)
        while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
            print('iter', iteration)
            x = x.requires_grad_(True)
            input['x'] = x
            e_t,  att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
            
            bboxes = input['boxes']
            object_positions = input['object_position'] 
            loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes,
                        object_positions=object_positions, t = index1)*loss_scale
            loss = loss2
            print('loss', loss) 
            hh = torch.autograd.backward(loss)
            grad_cond = x.grad
            x = x - grad_cond 
            x = x.detach()
            iteration += 1
            torch.cuda.empty_cache()
        return x

    def update_only_self(self, input,index1, index, ts,type_loss='self_accross' ):
        if index1 < 10:
            loss_scale = 4
            max_iter = 5
        elif index1 < 20:
            loss_scale = 3
            max_iter = 5
        else:
            loss_scale = 1
            max_iter = 1
        loss_threshold = 0.1

        max_index = 30
        x = deepcopy(input["x"]) 
        iteration = 0
        loss = torch.tensor(10000)
        input["timesteps"] = ts
        
        print("optimize", index1)
        while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
            print('iter', iteration)
            x = x.requires_grad_(True)
            input['x'] = x
            e_t,  att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
            
            bboxes = input['boxes']
            object_positions = input['object_position']
            loss = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes,
                                object_positions=object_positions, t = index1)*loss_scale 
            print('loss', loss)
            hh = torch.autograd.backward(loss)
            grad_cond = x.grad
            
            x = x - grad_cond 
            x = x.detach()
            iteration += 1
            torch.cuda.empty_cache()
        return x

    @torch.no_grad()
    def p_sample_plms(self, input, t, index, guidance_scale=1., uc=None, old_eps=None, t_next=None):
        x = deepcopy(input["x"]) 
        b = x.shape[0]
        self.model.eval()
        def get_model_output(input):
            e_t, first, second, third,_,_,_ = self.model(input) 
            if uc is not None and guidance_scale != 1:
                unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc, inpainting_extra_input=None, grounding_extra_input=None)
                # unconditional_input=input
                e_t_uncond, _, _, _, _, _, _ = self.model( unconditional_input) 
                e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond)
            return e_t


        def get_x_prev_and_pred_x0(e_t, index):
            # select parameters corresponding to the currently considered timestep
            a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device)
            a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device)
            sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device)
            sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device)

            # current prediction for x_0
            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()

            # direction pointing to x_t
            dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
            noise = sigma_t * torch.randn_like(x)
            x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
            return x_prev, pred_x0

        input["timesteps"] = t 
        e_t = get_model_output(input)
        if len(old_eps) == 0:
            # Pseudo Improved Euler (2nd order)
            x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
            input["x"] = x_prev
            input["timesteps"] = t_next
            e_t_next = get_model_output(input)
            e_t_prime = (e_t + e_t_next) / 2
        elif len(old_eps) == 1:
            # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
            e_t_prime = (3 * e_t - old_eps[-1]) / 2
        elif len(old_eps) == 2:
            # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
            e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
        elif len(old_eps) >= 3:
            # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
            e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24

        x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)

        return x_prev, pred_x0, e_t