Spaces:
Sleeping
Sleeping
File size: 13,071 Bytes
281df87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import torch
import numpy as np
from tqdm import tqdm
from functools import partial
from copy import deepcopy
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
import math
from ldm.models.diffusion.loss import caculate_loss_att_fixed_cnt, caculate_loss_self_att
class PLMSSampler(object):
def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
super().__init__()
self.diffusion = diffusion
self.model = model
self.device = diffusion.betas.device
self.ddpm_num_timesteps = diffusion.num_timesteps
self.schedule = schedule
self.alpha_generator_func = alpha_generator_func
self.set_alpha_scale = set_alpha_scale
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
attr = attr.to(self.device)
setattr(self, name, attr)
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False):
if ddim_eta != 0:
raise ValueError('ddim_eta must be 0 for PLMS')
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
alphas_cumprod = self.diffusion.alphas_cumprod
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
self.register_buffer('betas', to_torch(self.diffusion.betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
# ddim sampling parameters
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
ddim_timesteps=self.ddim_timesteps,
eta=ddim_eta,verbose=verbose)
self.register_buffer('ddim_sigmas', ddim_sigmas)
self.register_buffer('ddim_alphas', ddim_alphas)
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
# @torch.no_grad()
def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type='SAR_CAR'):
self.make_schedule(ddim_num_steps=S)
# import pdb; pdb.set_trace()
return self.plms_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0, loss_type=loss_type)
# @torch.no_grad()
def plms_sampling(self, shape, input, uc=None, guidance_scale=1, mask=None, x0=None, loss_type='SAR_CAR'):
b = shape[0]
img = input["x"]
if img == None:
img = torch.randn(shape, device=self.device)
input["x"] = img
time_range = np.flip(self.ddim_timesteps)
total_steps = self.ddim_timesteps.shape[0]
old_eps = []
if self.alpha_generator_func != None:
alphas = self.alpha_generator_func(len(time_range))
for i, step in enumerate(time_range):
# set alpha and restore first conv layer
if self.alpha_generator_func != None:
self.set_alpha_scale(self.model, alphas[i])
if alphas[i] == 0:
self.model.restore_first_conv_from_SD()
# run
index = total_steps - i - 1
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=self.device, dtype=torch.long)
if mask is not None:
assert x0 is not None
img_orig = self.diffusion.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
input["x"] = img
# three loss types
if loss_type !=None and loss_type!='standard':
if input['object_position'] != []:
if loss_type=='SAR_CAR':
x = self.update_loss_self_cross( input,i, index, ts )
elif loss_type=='SAR':
x = self.update_only_self( input,i, index, ts )
elif loss_type=='CAR':
x = self.update_loss_only_cross( input,i, index, ts )
input["x"] = x
img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next)
input["x"] = img
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
return img
def update_loss_self_cross(self, input,index1, index, ts,type_loss='self_accross' ):
if index1 < 10:
loss_scale = 4
max_iter = 1
elif index1 < 20:
loss_scale = 3
max_iter = 1
else:
loss_scale = 1
max_iter = 1
loss_threshold = 0.1
max_index = 30
x = deepcopy(input["x"])
iteration = 0
loss = torch.tensor(10000)
input["timesteps"] = ts
print("optimize", index1)
self.model.train()
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
print('iter', iteration)
# import pdb; pdb.set_trace()
x = x.requires_grad_(True)
input['x'] = x
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
bboxes = input['boxes_att']
object_positions = input['object_position']
loss1 = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes,
object_positions=object_positions, t = index1)*loss_scale
loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes,
object_positions=object_positions, t = index1)*loss_scale
loss = loss1 + loss2
print('loss', loss, loss1, loss2)
# hh = torch.autograd.backward(loss, retain_graph=True)
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [x])[0]
# grad_cond = x.grad
x = x - grad_cond
x = x.detach()
iteration += 1
return x
def update_loss_only_cross(self, input,index1, index, ts,type_loss='self_accross'):
if index1 < 10:
loss_scale = 3
max_iter = 5
elif index1 < 20:
loss_scale = 2
max_iter = 5
else:
loss_scale = 1
max_iter = 1
loss_threshold = 0.1
max_index = 30
x = deepcopy(input["x"])
iteration = 0
loss = torch.tensor(10000)
input["timesteps"] = ts
print("optimize", index1)
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
print('iter', iteration)
x = x.requires_grad_(True)
input['x'] = x
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
bboxes = input['boxes']
object_positions = input['object_position']
loss2 = caculate_loss_att_fixed_cnt(att_second,att_first,att_third, bboxes=bboxes,
object_positions=object_positions, t = index1)*loss_scale
loss = loss2
print('loss', loss)
hh = torch.autograd.backward(loss)
grad_cond = x.grad
x = x - grad_cond
x = x.detach()
iteration += 1
torch.cuda.empty_cache()
return x
def update_only_self(self, input,index1, index, ts,type_loss='self_accross' ):
if index1 < 10:
loss_scale = 4
max_iter = 5
elif index1 < 20:
loss_scale = 3
max_iter = 5
else:
loss_scale = 1
max_iter = 1
loss_threshold = 0.1
max_index = 30
x = deepcopy(input["x"])
iteration = 0
loss = torch.tensor(10000)
input["timesteps"] = ts
print("optimize", index1)
while loss.item() > loss_threshold and iteration < max_iter and (index1 < max_index) :
print('iter', iteration)
x = x.requires_grad_(True)
input['x'] = x
e_t, att_first, att_second, att_third, self_first, self_second, self_third = self.model(input)
bboxes = input['boxes']
object_positions = input['object_position']
loss = caculate_loss_self_att(self_first, self_second, self_third, bboxes=bboxes,
object_positions=object_positions, t = index1)*loss_scale
print('loss', loss)
hh = torch.autograd.backward(loss)
grad_cond = x.grad
x = x - grad_cond
x = x.detach()
iteration += 1
torch.cuda.empty_cache()
return x
@torch.no_grad()
def p_sample_plms(self, input, t, index, guidance_scale=1., uc=None, old_eps=None, t_next=None):
x = deepcopy(input["x"])
b = x.shape[0]
self.model.eval()
def get_model_output(input):
e_t, first, second, third,_,_,_ = self.model(input)
if uc is not None and guidance_scale != 1:
unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc, inpainting_extra_input=None, grounding_extra_input=None)
# unconditional_input=input
e_t_uncond, _, _, _, _, _, _ = self.model( unconditional_input)
e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond)
return e_t
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device)
a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device)
sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * torch.randn_like(x)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
input["timesteps"] = t
e_t = get_model_output(input)
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
input["x"] = x_prev
input["timesteps"] = t_next
e_t_next = get_model_output(input)
e_t_prime = (e_t + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * e_t - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
elif len(old_eps) >= 3:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
return x_prev, pred_x0, e_t
|