Spaces:
Running
on
Zero
Running
on
Zero
import spaces # Import spaces first to avoid CUDA initialization issues | |
import gradio as gr | |
import torch | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from transformers import AutoTokenizer | |
import soundfile as sf | |
import tempfile | |
# Load model and tokenizers at startup (on CPU initially) | |
print("Loading model and tokenizers...") | |
model = ParlerTTSForConditionalGeneration.from_pretrained("ai4bharat/indic-parler-tts").to("cpu") | |
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-parler-tts") | |
description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path) | |
print("Model and tokenizers loaded.") | |
# Supported languages and default settings | |
languages = { | |
"Urdu": "A female speaker delivers a clear and expressive speech in Urdu.", | |
"Punjabi": "A female speaker delivers a clear and expressive speech in Punjabi.", | |
"Sindhi": "A female speaker delivers a clear and expressive speech in Sindhi.", | |
} | |
emotions = [ | |
"Neutral", "Happy", "Sad", "Anger", "Command", "Narration", "Conversation", | |
"Disgust", "Fear", "News", "Proper Noun", "Surprise" | |
] | |
default_language = "Urdu" | |
default_gender = "Female" | |
default_emotion = "Neutral" | |
# Pre-defined sample inputs | |
sample_inputs = [ | |
" آسٹریلوی قانون سازوں نے فیس بک، انسٹاگرام اور ایکس جیسی مشہور سماجی ویب سائٹس کے خلاف دنیا کے مشکل ترین کریک ڈاؤن کی منظوری دیتے ہوئے 16 سال سے کم عمر افراد کے لیے سوشل میڈیا پر پابندی کا تاریخی قانون منظور کرلیا۔ ", | |
" وہ چاہتے ہیں کہ آسٹریلوی نوجوان موبائل بند کرکے کرکٹ کے میدانوں، ٹینس، نیٹ بال کوٹس اور سوئمنگ پول کا رخ کریں۔", | |
" .انہوں نے کہا کہ عزتیں دینے والا خدا ہے", | |
"ایس اجلاس وچ ورلڈ بلائنڈ کرکٹ کونسل نے اک اہم فیصلا کیتا تے واضح کر دتا کہ وومن ورلڈ کپ دے آن والے میچ غیر جانبدار پنڈال وچ منعقد کیتے جان گے۔ ", | |
" ملک وچ سونے دی قیمت فی تولہ اج 1000 روپے دی کمی ہو گئی اے", | |
". ملڪ ۾ اڄ سون جي في تولو قيمت ۾ هڪ هزار رپيا گهٽتائي ٿي وئي آهي" | |
] | |
# Generate description function | |
def generate_description(language, gender, emotion, noise, reverb, expressivity, pitch, rate, quality): | |
description = ( | |
f"A {gender.lower()} speaker delivers a {emotion.lower()} and {expressivity.lower()} speech " | |
f"with a {pitch.lower()} pitch and a {rate.lower()} speaking rate. " | |
f"The audio has {noise.lower()} background noise, {reverb.lower()} reverberation, " | |
f"and {quality.lower()} voice quality. The text is in {language}." | |
) | |
return description | |
# Generate audio function with GPU allocation | |
# Allocate GPU for the duration of this function | |
def generate_audio(text, description): | |
global model # Access the preloaded model | |
# Move model to GPU | |
model.to("cuda") | |
# Prepare model inputs | |
input_ids = description_tokenizer(description, return_tensors="pt").input_ids.to("cuda") | |
prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to("cuda") | |
# Generate audio | |
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) | |
audio_arr = generation.cpu().numpy().squeeze() | |
# Save audio to a temporary file | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f: | |
sf.write(f.name, audio_arr, model.config.sampling_rate) | |
audio_path = f.name | |
# Move model back to CPU to free GPU memory | |
model.to("cpu") | |
return audio_path | |
# Gradio Interface | |
def app(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# Indic Parler-TTS for Urdu, Punjabi, and Sindhi") | |
gr.Markdown("Select language, speaker gender, emotion, and customize speech characteristics.") | |
with gr.Row(): | |
lang_dropdown = gr.Dropdown( | |
choices=list(languages.keys()), | |
value=default_language, | |
label="Select Language" | |
) | |
gender_dropdown = gr.Dropdown( | |
choices=["Male", "Female"], | |
value=default_gender, | |
label="Speaker Gender" | |
) | |
emotion_dropdown = gr.Dropdown( | |
choices=emotions, | |
value=default_emotion, | |
label="Select Emotion" | |
) | |
with gr.Row(): | |
noise_dropdown = gr.Dropdown( | |
choices=["Clear", "Slightly Noisy"], | |
value="Clear", | |
label="Background Noise" | |
) | |
reverb_dropdown = gr.Dropdown( | |
choices=["Close-Sounding", "Distant-Sounding"], | |
value="Close-Sounding", | |
label="Reverberation" | |
) | |
expressivity_dropdown = gr.Dropdown( | |
choices=["Expressive", "Slightly Expressive", "Monotone"], | |
value="Expressive", | |
label="Expressivity" | |
) | |
pitch_dropdown = gr.Dropdown( | |
choices=["High", "Low", "Balanced"], | |
value="Balanced", | |
label="Pitch" | |
) | |
rate_dropdown = gr.Dropdown( | |
choices=["Slow", "Moderate", "Fast"], | |
value="Moderate", | |
label="Speaking Rate" | |
) | |
quality_dropdown = gr.Dropdown( | |
choices=["Basic", "Refined"], | |
value="Refined", | |
label="Voice Quality" | |
) | |
# Textbox for text input | |
text_input = gr.Textbox( | |
label="Enter Text", | |
placeholder="Type your text here...", | |
lines=5 | |
) | |
# Add sample input buttons | |
with gr.Row(): | |
for sample in sample_inputs: | |
gr.Button(value=f"Use Sample: {sample}").click( | |
fn=lambda x: x, # Return the sample text | |
inputs=[gr.Textbox(value=sample, visible=False)], # Pass sample as input | |
outputs=text_input # Update the text input | |
) | |
with gr.Row(): | |
generate_caption_button = gr.Button("Generate Caption/Description") | |
caption_output = gr.Textbox( | |
label="Generated Caption/Description", | |
placeholder="The generated caption will appear here...", | |
lines=5 | |
) | |
with gr.Row(): | |
generate_audio_button = gr.Button("Generate Speech") | |
audio_output = gr.Audio(label="Generated Audio") | |
# Link actions to buttons | |
generate_caption_button.click( | |
fn=generate_description, | |
inputs=[ | |
lang_dropdown, gender_dropdown, emotion_dropdown, | |
noise_dropdown, reverb_dropdown, expressivity_dropdown, | |
pitch_dropdown, rate_dropdown, quality_dropdown | |
], | |
outputs=caption_output | |
) | |
generate_audio_button.click( | |
fn=generate_audio, | |
inputs=[text_input, caption_output], | |
outputs=audio_output | |
) | |
return demo | |
# Run the app | |
app().launch() | |