File size: 7,485 Bytes
ad22c49
c611518
 
 
 
 
 
 
6904c9a
 
 
 
 
 
 
1e8fb53
 
 
 
 
 
 
 
 
 
 
 
 
 
ef26fae
 
 
 
 
 
 
 
 
 
c611518
 
 
 
 
 
 
 
 
 
69d2a81
 
c611518
6904c9a
 
 
 
69d2a81
c611518
69d2a81
 
c611518
 
 
 
 
 
 
 
 
 
6904c9a
 
 
c611518
 
 
 
1e8fb53
 
 
c611518
 
 
1e8fb53
 
c611518
 
 
 
1e8fb53
c611518
 
 
1e8fb53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c611518
 
222c2e0
 
 
 
 
 
ef26fae
 
 
 
222c2e0
1e8fb53
 
 
ef26fae
c611518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8fb53
 
c611518
 
 
 
 
 
 
 
 
 
 
 
 
69d2a81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import spaces  # Import spaces first to avoid CUDA initialization issues
import gradio as gr
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf
import tempfile

# Load model and tokenizers at startup (on CPU initially)
print("Loading model and tokenizers...")
model = ParlerTTSForConditionalGeneration.from_pretrained("ai4bharat/indic-parler-tts").to("cpu")
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-parler-tts")
description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
print("Model and tokenizers loaded.")

# Supported languages and default settings
languages = {
    "Urdu": "A female speaker delivers a clear and expressive speech in Urdu.",
    "Punjabi": "A female speaker delivers a clear and expressive speech in Punjabi.",
    "Sindhi": "A female speaker delivers a clear and expressive speech in Sindhi.",
}
emotions = [
    "Neutral", "Happy", "Sad", "Anger", "Command", "Narration", "Conversation",
    "Disgust", "Fear", "News", "Proper Noun", "Surprise"
]
default_language = "Urdu"
default_gender = "Female"
default_emotion = "Neutral"

# Pre-defined sample inputs
sample_inputs = [
    " آسٹریلوی قانون سازوں نے فیس بک، انسٹاگرام اور ایکس جیسی مشہور سماجی ویب سائٹس کے خلاف دنیا کے مشکل ترین کریک ڈاؤن کی منظوری دیتے ہوئے 16 سال سے کم عمر افراد کے لیے سوشل میڈیا پر پابندی کا تاریخی قانون منظور کرلیا۔ ",
    " وہ چاہتے ہیں کہ آسٹریلوی نوجوان موبائل بند کرکے کرکٹ کے میدانوں، ٹینس، نیٹ بال کوٹس اور سوئمنگ پول کا رخ کریں۔",
    " .انہوں نے کہا کہ عزتیں دینے والا خدا ہے",
    "ایس اجلاس وچ ورلڈ بلائنڈ کرکٹ کونسل نے اک اہم فیصلا کیتا تے واضح کر دتا کہ وومن ورلڈ کپ دے آن والے میچ غیر جانبدار پنڈال وچ منعقد کیتے جان گے۔ ",
    " ملک وچ سونے دی قیمت فی تولہ اج 1000 روپے دی کمی ہو گئی اے",
    ". ملڪ ۾ اڄ سون جي في تولو قيمت ۾ هڪ هزار رپيا گهٽتائي ٿي وئي آهي"
]

# Generate description function
def generate_description(language, gender, emotion, noise, reverb, expressivity, pitch, rate, quality):
    description = (
        f"A {gender.lower()} speaker delivers a {emotion.lower()} and {expressivity.lower()} speech "
        f"with a {pitch.lower()} pitch and a {rate.lower()} speaking rate. "
        f"The audio has {noise.lower()} background noise, {reverb.lower()} reverberation, "
        f"and {quality.lower()} voice quality. The text is in {language}."
    )
    return description

# Generate audio function with GPU allocation
@spaces.GPU  # Allocate GPU for the duration of this function
def generate_audio(text, description):
    global model  # Access the preloaded model

    # Move model to GPU
    model.to("cuda")

    # Prepare model inputs
    input_ids = description_tokenizer(description, return_tensors="pt").input_ids.to("cuda")
    prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to("cuda")

    # Generate audio
    generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
    audio_arr = generation.cpu().numpy().squeeze()

    # Save audio to a temporary file
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
        sf.write(f.name, audio_arr, model.config.sampling_rate)
        audio_path = f.name

    # Move model back to CPU to free GPU memory
    model.to("cpu")

    return audio_path

# Gradio Interface
def app():
    with gr.Blocks() as demo:
        gr.Markdown("# Indic Parler-TTS for Urdu, Punjabi, and Sindhi")
        gr.Markdown("Select language, speaker gender, emotion, and customize speech characteristics.")
        
        with gr.Row():
            lang_dropdown = gr.Dropdown(
                choices=list(languages.keys()), 
                value=default_language, 
                label="Select Language"
            )
            gender_dropdown = gr.Dropdown(
                choices=["Male", "Female"], 
                value=default_gender, 
                label="Speaker Gender"
            )
            emotion_dropdown = gr.Dropdown(
                choices=emotions, 
                value=default_emotion, 
                label="Select Emotion"
            )
        
        with gr.Row():
            noise_dropdown = gr.Dropdown(
                choices=["Clear", "Slightly Noisy"], 
                value="Clear", 
                label="Background Noise"
            )
            reverb_dropdown = gr.Dropdown(
                choices=["Close-Sounding", "Distant-Sounding"], 
                value="Close-Sounding", 
                label="Reverberation"
            )
            expressivity_dropdown = gr.Dropdown(
                choices=["Expressive", "Slightly Expressive", "Monotone"], 
                value="Expressive", 
                label="Expressivity"
            )
            pitch_dropdown = gr.Dropdown(
                choices=["High", "Low", "Balanced"], 
                value="Balanced", 
                label="Pitch"
            )
            rate_dropdown = gr.Dropdown(
                choices=["Slow", "Moderate", "Fast"], 
                value="Moderate", 
                label="Speaking Rate"
            )
            quality_dropdown = gr.Dropdown(
                choices=["Basic", "Refined"], 
                value="Refined", 
                label="Voice Quality"
            )
        
        # Textbox for text input
        text_input = gr.Textbox(
            label="Enter Text",
            placeholder="Type your text here...",
            lines=5
        )

        # Add sample input buttons
        with gr.Row():
            for sample in sample_inputs:
                gr.Button(value=f"Use Sample: {sample}").click(
                    fn=lambda x: x,  # Return the sample text
                    inputs=[gr.Textbox(value=sample, visible=False)],  # Pass sample as input
                    outputs=text_input  # Update the text input
                )
        
        with gr.Row():
            generate_caption_button = gr.Button("Generate Caption/Description")
            caption_output = gr.Textbox(
                label="Generated Caption/Description",
                placeholder="The generated caption will appear here...",
                lines=5
            )
        
        with gr.Row():
            generate_audio_button = gr.Button("Generate Speech")
            audio_output = gr.Audio(label="Generated Audio")

        # Link actions to buttons
        generate_caption_button.click(
            fn=generate_description, 
            inputs=[
                lang_dropdown, gender_dropdown, emotion_dropdown,
                noise_dropdown, reverb_dropdown, expressivity_dropdown,
                pitch_dropdown, rate_dropdown, quality_dropdown
            ], 
            outputs=caption_output
        )
        
        generate_audio_button.click(
            fn=generate_audio, 
            inputs=[text_input, caption_output], 
            outputs=audio_output
        )
        
    return demo

# Run the app
app().launch()