ProfessorLeVesseur
commited on
Commit
•
73b2f83
1
Parent(s):
c60d2d1
Update main.py
Browse files
main.py
CHANGED
@@ -1,3 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from app_config import AppConfig
|
3 |
from data_processor import DataProcessor
|
@@ -60,6 +149,19 @@ def main():
|
|
60 |
st.subheader("Student Metrics")
|
61 |
st.write(student_metrics_df)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Compute Student Metric Averages
|
64 |
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
65 |
|
@@ -84,4 +186,4 @@ def main():
|
|
84 |
st.error(f"Error reading the file: {str(e)}")
|
85 |
|
86 |
if __name__ == '__main__':
|
87 |
-
main()
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# from app_config import AppConfig
|
3 |
+
# from data_processor import DataProcessor
|
4 |
+
# from visualization import Visualization
|
5 |
+
# from ai_analysis import AIAnalysis
|
6 |
+
# from sidebar import Sidebar # Import the Sidebar class
|
7 |
+
|
8 |
+
# def main():
|
9 |
+
# # Initialize the app configuration
|
10 |
+
# app_config = AppConfig()
|
11 |
+
|
12 |
+
# # Initialize the sidebar
|
13 |
+
# sidebar = Sidebar()
|
14 |
+
# sidebar.display() # Display the sidebar
|
15 |
+
|
16 |
+
# # Initialize the data processor
|
17 |
+
# data_processor = DataProcessor()
|
18 |
+
|
19 |
+
# # Initialize the visualization handler
|
20 |
+
# visualization = Visualization()
|
21 |
+
|
22 |
+
# # Initialize the AI analysis handler
|
23 |
+
# ai_analysis = AIAnalysis(data_processor.client)
|
24 |
+
|
25 |
+
# st.title("Intervention Program Analysis")
|
26 |
+
|
27 |
+
# # File uploader
|
28 |
+
# uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
|
29 |
+
|
30 |
+
# if uploaded_file is not None:
|
31 |
+
# try:
|
32 |
+
# # Read the Excel file into a DataFrame
|
33 |
+
# df = data_processor.read_excel(uploaded_file)
|
34 |
+
|
35 |
+
# # Format the session data
|
36 |
+
# df = data_processor.format_session_data(df)
|
37 |
+
|
38 |
+
# # Replace student names with initials
|
39 |
+
# df = data_processor.replace_student_names_with_initials(df)
|
40 |
+
|
41 |
+
# st.subheader("Uploaded Data")
|
42 |
+
# st.write(df)
|
43 |
+
|
44 |
+
# # Ensure expected column is available
|
45 |
+
# if DataProcessor.INTERVENTION_COLUMN not in df.columns:
|
46 |
+
# st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.")
|
47 |
+
# return
|
48 |
+
|
49 |
+
# # Compute Intervention Session Statistics
|
50 |
+
# intervention_stats = data_processor.compute_intervention_statistics(df)
|
51 |
+
# st.subheader("Intervention Session Statistics")
|
52 |
+
# st.write(intervention_stats)
|
53 |
+
|
54 |
+
# # Plot and download intervention statistics
|
55 |
+
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
56 |
+
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
57 |
+
|
58 |
+
# # Compute Student Metrics
|
59 |
+
# student_metrics_df = data_processor.compute_student_metrics(df)
|
60 |
+
# st.subheader("Student Metrics")
|
61 |
+
# st.write(student_metrics_df)
|
62 |
+
|
63 |
+
# # Compute Student Metric Averages
|
64 |
+
# attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
65 |
+
|
66 |
+
# # Plot and download student metrics
|
67 |
+
# student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
68 |
+
# visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
69 |
+
|
70 |
+
# # Prepare input for the language model
|
71 |
+
# llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
72 |
+
|
73 |
+
# # Generate Notes and Recommendations using Hugging Face LLM
|
74 |
+
# with st.spinner("Generating AI analysis..."):
|
75 |
+
# recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
|
76 |
+
|
77 |
+
# st.subheader("AI Analysis")
|
78 |
+
# st.markdown(recommendations)
|
79 |
+
|
80 |
+
# # Download AI output
|
81 |
+
# ai_analysis.download_llm_output(recommendations, "llm_output.txt")
|
82 |
+
|
83 |
+
# except Exception as e:
|
84 |
+
# st.error(f"Error reading the file: {str(e)}")
|
85 |
+
|
86 |
+
# if __name__ == '__main__':
|
87 |
+
# main()
|
88 |
+
|
89 |
+
|
90 |
import streamlit as st
|
91 |
from app_config import AppConfig
|
92 |
from data_processor import DataProcessor
|
|
|
149 |
st.subheader("Student Metrics")
|
150 |
st.write(student_metrics_df)
|
151 |
|
152 |
+
# Display decision tree diagrams for each student
|
153 |
+
st.subheader("Decision Path for Each Student")
|
154 |
+
for index, row in student_metrics_df.iterrows():
|
155 |
+
st.write(f"Decision Tree for Student {row['Student']}:")
|
156 |
+
|
157 |
+
# Generate and display the tree diagram
|
158 |
+
try:
|
159 |
+
dot = data_processor.build_tree_diagram(row)
|
160 |
+
st.graphviz_chart(dot)
|
161 |
+
st.write(f"Outcome: {row.get('Outcome', 'No outcome data')}")
|
162 |
+
except Exception as e:
|
163 |
+
st.error(f"Error generating decision tree for {row['Student']}: {str(e)}")
|
164 |
+
|
165 |
# Compute Student Metric Averages
|
166 |
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
167 |
|
|
|
186 |
st.error(f"Error reading the file: {str(e)}")
|
187 |
|
188 |
if __name__ == '__main__':
|
189 |
+
main()
|