Intervention-Program-Analyst_2 / 03_Ink QA™ | Intensifying Literacy Instruction_Conversational_HF.py
ProfessorLeVesseur's picture
Upload 5 files
92bebf5 verified
raw
history blame
7.78 kB
import streamlit as st
import pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Pinecone, Chroma
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
import tiktoken
import random
# Hardcode the OpenAI API key
openai_api_key = "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"
# Pinecone API key and environment
api_key = "58e247f3-041d-48ed-8466-61b39efa56a9"
environment = "gcp-starter"
# Initialize Pinecone
pinecone.init(api_key=api_key, environment=environment)
# Define the name of the Pinecone index
index_name = 'mi-resource-qa'
# Initialize the OpenAI embeddings object with the hardcoded API key
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Define functions
def insert_or_fetch_embeddings(index_name):
if index_name in pinecone.list_indexes():
vector_store = Pinecone.from_existing_index(index_name, embeddings)
return vector_store
else:
raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.")
# Initialize or fetch Pinecone vector store
vector_store = insert_or_fetch_embeddings(index_name)
# Define the metadata for filtering
# metadata = {'source': '/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Intensifying Literacy Instruction - Essential Practices (NATIONAL).pdf'}
# calculate embedding cost using tiktoken
def calculate_embedding_cost(text):
import tiktoken
enc = tiktoken.encoding_for_model('text-embedding-ada-002')
total_tokens = len(enc.encode(text))
# print(f'Total Tokens: {total_tokens}')
# print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}')
return total_tokens, total_tokens / 1000 * 0.0004
def ask_with_memory(vector_store, query, chat_history=[]):
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=1, openai_api_key=openai_api_key)
retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
chain= ConversationalRetrievalChain.from_llm(llm, retriever)
result = chain({'question': query, 'chat_history': st.session_state['history']})
# Append to chat history as a dictionary
st.session_state['history'].append((query, result['answer']))
return (result['answer'])
# Initialize chat history
if 'history' not in st.session_state:
st.session_state['history'] = []
# # STREAMLIT APPLICATION SETUP WITH PASSWORD
# Define the correct password
# correct_password = "MiBLSi"
#Add the image with a specified width
image_width = 300 # Set the desired width in pixels
st.image('/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Streamlit_Document_Reader_Simple/MTSS.ai_Logo.png', width=image_width)
st.subheader('Ink QA™ | Dynamic PDFs')
# Using Markdown for formatted text
st.markdown("""
Resource: **Intensifying Literacy Instruction: Essential Practices**
""", unsafe_allow_html=True)
with st.sidebar:
# Password input field
# password = st.text_input("Enter Password:", type="password")
st.image('/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Streamlit_Document_Reader_Simple/mimtss.png', width=200)
st.image('/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Streamlit_Document_Reader_Simple/Literacy_Cover.png', width=200)
st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
Audio_Header_text = """
**Tune into Dr. St. Martin's introduction**"""
st.markdown(Audio_Header_text)
# Path or URL to the audio file
audio_file_path = '/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Streamlit_Document_Reader_Simple/Audio_Introduction_Literacy.m4a'
# Display the audio player widget
st.audio(audio_file_path, format='audio/mp4', start_time=0)
# Citation text with Markdown formatting
citation_Content_text = """
**Citation**
St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
**Table of Contents**
* **Introduction**: pg. 1
* **Intensifying Literacy Instruction: Essential Practices**: pg. 4
* **Purpose**: pg. 4
* **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
* **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
* **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
* **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
* **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
* **Motivation and Engagement**: pg. 28
* **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
* **Summary**: pg. 29
* **Endnotes**: pg. 30
* **Acknowledgment**: pg. 39
"""
st.markdown(citation_Content_text)
# if password == correct_password:
# Define a list of possible placeholder texts
placeholders = [
'Example: Summarize the article in 200 words or less',
'Example: What are the essential practices?',
'Example: I am a teacher, why is this resource important?',
'Example: How can this resource support my instruction in reading and writing?',
'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
'Example: How does this resource address the needs of students scoring below the 20th percentile?',
'Example: Are there assessment tools included in this resource to monitor student progress?',
'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
"Example: How can this resource be used to support students' social-emotional development?",
"Example: How does this resource align with the district's literacy goals and objectives?",
'Example: What research and evidence support the effectiveness of this resource?',
'Example: Does this resource provide guidance on implementation fidelity'
]
# Select a random placeholder from the list
if 'placeholder' not in st.session_state:
st.session_state.placeholder = random.choice(placeholders)
q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
# q = st.text_input(label='Ask a question or make a request ', value='')
k = 3 # Set k to 3
# # Initialize chat history if not present
# if 'history' not in st.session_state:
# st.session_state.history = []
if q:
with st.spinner('Thinking...'):
answer = ask_with_memory(vector_store, q, st.session_state.history)
# Display the response in a text area
st.text_area('Response: ', value=answer, height=400, key="response_text_area")
st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')
# # Prepare chat history text for display
# history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history)
# Prepare chat history text for display in reverse order
history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))
# Display chat history
st.text_area('Chat History', value=history_text, height=800)