ProfessorLeVesseur's picture
Update main.py
a7df111 verified
raw
history blame
3.27 kB
import streamlit as st
from app_config import AppConfig
from data_processor import DataProcessor
from visualization import Visualization
from ai_analysis import AIAnalysis
from sidebar import Sidebar # Import the Sidebar class
def main():
# Initialize the app configuration
app_config = AppConfig()
# Initialize the sidebar
sidebar = Sidebar()
sidebar.display() # Display the sidebar
# Initialize the data processor
data_processor = DataProcessor()
# Initialize the visualization handler
visualization = Visualization()
# Initialize the AI analysis handler
ai_analysis = AIAnalysis(data_processor.client)
st.title("Intervention Program Analysis")
# File uploader
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
if uploaded_file is not None:
try:
# Read the Excel file into a DataFrame
df = data_processor.read_excel(uploaded_file)
# Format the session data
df = data_processor.format_session_data(df)
# Replace student names with initials
df = data_processor.replace_student_names_with_initials(df)
st.subheader("Uploaded Data")
st.write(df)
# Ensure expected column is available
if DataProcessor.INTERVENTION_COLUMN not in df.columns:
st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.")
return
# Compute Intervention Session Statistics
intervention_stats = data_processor.compute_intervention_statistics(df)
st.subheader("Intervention Session Statistics")
st.write(intervention_stats)
# Plot and download intervention statistics
intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
# Compute Student Metrics
student_metrics_df = data_processor.compute_student_metrics(df)
st.subheader("Student Metrics")
st.write(student_metrics_df)
# Compute Student Metric Averages
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
# Plot and download student metrics
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
# Prepare input for the language model
llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
# Generate Notes and Recommendations using Hugging Face LLM
with st.spinner("Generating AI analysis..."):
recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
st.subheader("AI Analysis")
st.markdown(recommendations)
# Download AI output
ai_analysis.download_llm_output(recommendations, "llm_output.txt")
except Exception as e:
st.error(f"Error reading the file: {str(e)}")
if __name__ == '__main__':
main()