# import streamlit as st | |
# from app_config import AppConfig # Import the configerations class | |
# from data_processor import DataProcessor # Import the data analysis class | |
# from visualization import Visualization # Import the data viz class | |
# from ai_analysis import AIAnalysis # Import the ai analysis class | |
# from sidebar import Sidebar # Import the Sidebar class | |
# def main(): | |
# # Initialize the app configuration | |
# app_config = AppConfig() | |
# # Initialize the sidebar | |
# sidebar = Sidebar() | |
# sidebar.display() | |
# # Initialize the data processor | |
# data_processor = DataProcessor() | |
# # Initialize the visualization handler | |
# visualization = Visualization() | |
# # Initialize the AI analysis handler | |
# ai_analysis = AIAnalysis(data_processor.client) | |
# st.title("Intervention Program Analysis") | |
# # File uploader | |
# uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"]) | |
# if uploaded_file is not None: | |
# try: | |
# # Read the Excel file into a DataFrame | |
# df = data_processor.read_excel(uploaded_file) | |
# # Format the session data | |
# df = data_processor.format_session_data(df) | |
# # Replace student names with initials | |
# df = data_processor.replace_student_names_with_initials(df) | |
# st.subheader("Uploaded Data") | |
# st.write(df) | |
# # Ensure expected column is available | |
# if DataProcessor.INTERVENTION_COLUMN not in df.columns: | |
# st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.") | |
# return | |
# # Compute Intervention Session Statistics | |
# intervention_stats = data_processor.compute_intervention_statistics(df) | |
# st.subheader("Intervention Session Statistics") | |
# st.write(intervention_stats) | |
# # Plot and download intervention statistics | |
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats) | |
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png") | |
# # Compute Student Metrics | |
# student_metrics_df = data_processor.compute_student_metrics(df) | |
# st.subheader("Student Metrics") | |
# st.write(student_metrics_df) | |
# # Compute Student Metric Averages | |
# attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df) | |
# # Plot and download student metrics | |
# student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats) | |
# visualization.download_chart(student_metrics_fig, "student_metrics_chart.png") | |
# # Prepare input for the language model | |
# llm_input = ai_analysis.prepare_llm_input(student_metrics_df) | |
# # Generate Notes and Recommendations using Hugging Face LLM | |
# with st.spinner("Generating AI analysis..."): | |
# recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input) | |
# st.subheader("AI Analysis") | |
# st.markdown(recommendations) | |
# # Download AI output | |
# ai_analysis.download_llm_output(recommendations, "llm_output.txt") | |
# except Exception as e: | |
# st.error(f"Error reading the file: {str(e)}") | |
# if __name__ == '__main__': | |
# main() | |
import streamlit as st | |
from app_config import AppConfig # Import the configurations class | |
from data_processor import DataProcessor # Import the data analysis class | |
from visualization import Visualization # Import the data viz class | |
from ai_analysis import AIAnalysis # Import the ai analysis class | |
from sidebar import Sidebar # Import the Sidebar class | |
def main(): | |
# Initialize the app configuration | |
app_config = AppConfig() | |
# Initialize the sidebar | |
sidebar = Sidebar() | |
sidebar.display() | |
# Initialize the data processor | |
data_processor = DataProcessor() | |
# Initialize the visualization handler | |
visualization = Visualization() | |
# Initialize the AI analysis handler | |
ai_analysis = AIAnalysis(data_processor.client) | |
st.title("Intervention Program Analysis") | |
# File uploader | |
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"]) | |
if uploaded_file is not None: | |
try: | |
# Read the Excel file into a DataFrame | |
df = data_processor.read_excel(uploaded_file) | |
# Format the session data | |
df = data_processor.format_session_data(df) | |
# Replace student names with initials | |
df = data_processor.replace_student_names_with_initials(df) | |
st.subheader("Uploaded Data") | |
st.write(df) | |
# Ensure expected column is available | |
if DataProcessor.INTERVENTION_COLUMN not in df.columns: | |
st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.") | |
return | |
# Compute Intervention Session Statistics | |
intervention_stats = data_processor.compute_intervention_statistics(df) | |
st.subheader("Intervention Session Statistics") | |
st.write(intervention_stats) | |
# Plot and download intervention statistics | |
intervention_fig = visualization.plot_intervention_statistics(intervention_stats) | |
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png") | |
# Compute Student Metrics | |
student_metrics_df = data_processor.compute_student_metrics(df) | |
st.subheader("Student Metrics") | |
st.write(student_metrics_df) | |
# Compute Student Metric Averages | |
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df) | |
# Plot and download student metrics | |
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats) | |
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png") | |
# Evaluate each student and build decision tree diagrams | |
student_metrics_df['Evaluation'] = student_metrics_df.apply( | |
lambda row: data_processor.evaluate_student(row), axis=1 | |
) | |
st.subheader("Student Evaluations") | |
st.write(student_metrics_df[['Student', 'Evaluation']]) | |
# Build and display decision tree diagrams for each student | |
for index, row in student_metrics_df.iterrows(): | |
tree_diagram = data_processor.build_tree_diagram(row) | |
st.graphviz_chart(tree_diagram.source) | |
# Prepare input for the language model | |
llm_input = ai_analysis.prepare_llm_input(student_metrics_df) | |
# Generate Notes and Recommendations using Hugging Face LLM | |
with st.spinner("Generating AI analysis..."): | |
recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input) | |
st.subheader("AI Analysis") | |
st.markdown(recommendations) | |
# Download AI output | |
ai_analysis.download_llm_output(recommendations, "llm_output.txt") | |
except Exception as e: | |
st.error(f"Error processing the file: {str(e)}") | |
if __name__ == '__main__': | |
main() |