File size: 26,339 Bytes
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208c4cb
48f9ec0
208c4cb
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
208c4cb
48f9ec0
 
 
a470a17
 
 
 
 
208c4cb
 
 
 
48f9ec0
 
 
e157853
48f9ec0
 
208c4cb
48f9ec0
 
 
 
 
 
208c4cb
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d234974
6808b16
f1740fa
6808b16
f1740fa
6808b16
 
 
 
 
0918e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6808b16
 
0918e3b
 
 
 
 
 
48f9ec0
 
 
7437eff
 
48f9ec0
 
 
7437eff
 
 
0918e3b
 
51524e7
7437eff
0a3e3df
48f9ec0
 
51524e7
48f9ec0
7437eff
48f9ec0
0a3e3df
48f9ec0
 
7437eff
48f9ec0
 
7437eff
48f9ec0
 
f6d1135
fcd1755
51524e7
b0c1d78
fcd1755
51524e7
 
fcd1755
51524e7
 
b0c1d78
3040988
b0c1d78
3040988
48f9ec0
7437eff
48f9ec0
 
7437eff
48f9ec0
 
 
 
af8357b
 
 
15f1920
 
 
7be86a5
 
f5e1694
7be86a5
 
3040988
7be86a5
 
 
 
 
 
 
f5e1694
7be86a5
 
 
 
 
 
f5e1694
7437eff
48f9ec0
 
7437eff
48f9ec0
 
7437eff
48f9ec0
 
 
 
 
 
7437eff
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7607606
48f9ec0
51524e7
48f9ec0
51524e7
48f9ec0
 
51524e7
48f9ec0
 
 
 
 
 
 
 
 
 
fcd1755
 
 
 
48f9ec0
51524e7
7607606
 
 
 
48f9ec0
51524e7
 
7607606
b0c1d78
 
7574679
42cf179
 
 
 
 
48f9ec0
 
 
2ba307e
48f9ec0
 
 
 
 
 
 
 
 
 
 
7437eff
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1740fa
48f9ec0
bb7e61f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48f9ec0
bb7e61f
 
 
 
 
 
48f9ec0
bb7e61f
 
48f9ec0
bb7e61f
 
48f9ec0
bb7e61f
 
f1740fa
bb7e61f
 
 
 
48f9ec0
4eb7186
7607606
bb7e61f
 
 
 
 
48f9ec0
 
 
 
 
7251a07
48f9ec0
f5e1694
 
 
 
 
 
 
 
 
 
 
38faed4
6808b16
4eb7186
89ef316
 
0caf191
7607606
0caf191
 
 
 
 
 
 
 
 
 
 
 
89ef316
d234974
 
0caf191
4eb7186
89ef316
d234974
 
0caf191
4eb7186
0caf191
7eb5777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c99eb
 
 
 
 
 
 
42cf179
32c99eb
 
 
920d0ae
32c99eb
7eb5777
920d0ae
b944f35
 
920d0ae
6808b16
0caf191
da9b757
 
48f9ec0
0caf191
67c294a
48f9ec0
 
 
 
 
 
 
 
ad18331
48f9ec0
 
 
 
 
 
 
6ea871f
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea871f
 
 
 
 
 
 
 
 
 
 
 
 
 
48f9ec0
6ea871f
 
 
 
 
 
 
 
48f9ec0
 
 
 
6ea871f
48f9ec0
 
 
 
 
 
 
208c4cb
48f9ec0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
# CHARTS + DOWNLOAD + NO NAMES
# intervention_analysis_app.py

#------------------------------------------------------------------------
# Import Modules
#------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import io
import re
# from transformers import pipeline
from huggingface_hub import InferenceClient
import os
from pathlib import Path
from dotenv import load_dotenv

load_dotenv()

#------------------------------------------------------------------------
# Configurations
#------------------------------------------------------------------------
# Streamlit page setup
st.set_page_config(
    page_title="Intervention Program Analysis", 
    page_icon=":bar_chart:", 
    layout="centered", 
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'mailto:[email protected]',
        'About': "This app is built to support spreadsheet analysis"
    }
)

#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------
# logo
main_body_logo = "mimtss.png"
sidebar_logo = "mimtss_small.png"
st.logo(sidebar_logo, icon_image=main_body_logo)

with st.sidebar:
    # Password input field
    # password = st.text_input("Enter Password:", type="password")
    
    # Set the desired width in pixels
    image_width = 300  
    # Define the path to the image
    image_path = "mimtss.png"
    # Display the image
    st.image(image_path, width=image_width)
    
    # Toggle for Help and Report a Bug
    with st.expander("Need help and report a bug"):
        st.write("""
        **Contact**: Cheyne LeVesseur, PhD  
        **Email**: [email protected]
        """)
    st.divider()
    st.subheader('User Instructions')
    
    # Principles text with Markdown formatting
    User_Instructions = """

    - **Step 1**: Upload your Excel file.
    - **Step 2**: Anonymization – student names are replaced with initials for privacy.
    - **Step 3**: Review anonymized data.
    - **Step 4**: View **intervention session statistics**.
    - **Step 5**: Review **student attendance and engagement metrics**.
    - **Step 6**: Review AI-generated **insights and recommendations**.

    ### **Privacy Assurance**
    - **No full names** are ever displayed or sent to the AI model—only initials are used.
    - This ensures that sensitive data remains protected throughout the entire process.

    ### **Detailed Instructions**

    #### **1. Upload Your Excel File**
    - Start by uploading an Excel file that contains intervention data. 
    - Click on the **“Upload your Excel file”** button and select your `.xlsx` file from your computer.

    **Note**: Your file should have columns like "Did the intervention happen today?" and "Student Attendance [FirstName LastName]" for the analysis to work correctly.

    #### **2. Automated Name Anonymization**
    - Once the file is uploaded, the app will **automatically replace student names with initials** in the "Student Attendance" columns.
      - For example, **"Student Attendance [Cheyne LeVesseur]"** will be displayed as **"Student Attendance [CL]"**.
      - If the student only has a first name, like **"Student Attendance [Cheyne]"**, it will be displayed as **"Student Attendance [C]"**.
    - This anonymization helps to **protect student privacy**, ensuring that full names are not visible or sent to the AI language model.

    #### **3. Review the Uploaded Data**
    - You will see the entire table of anonymized data to verify that the information has been uploaded correctly and that names have been replaced with initials.

    #### **4. Intervention Session Statistics**
    - The app will calculate and display statistics related to intervention sessions, such as:
      - **Total Number of Days Available**
      - **Intervention Sessions Held**
      - **Intervention Sessions Not Held**
      - **Intervention Frequency (%)**
    - A **stacked bar chart** will be shown to visualize the number of sessions held versus not held.
    - If you need to save the visualization, click the **“Download Chart”** button to download it as a `.png` file.

    #### **5. Student Metrics Analysis**
    - The app will also calculate metrics for each student:
      - **Attendance (%)** – The percentage of intervention sessions attended.
      - **Engagement (%)** – The level of engagement during attended sessions.
    - These metrics will be presented in a **line graph** that shows attendance and engagement for each student.
    - You can click the **“Download Chart”** button to download the visualization as a `.png` file.

    #### **6. Generate AI Analysis and Recommendations**
    - The app will prepare data from the student metrics to provide notes, key takeaways, and suggestions for improving outcomes using an **AI language model**.
    - You will see a **spinner** labeled **“Generating AI analysis…”** while the AI processes the data.
      - This step may take a little longer, but the spinner ensures you know that the system is working.
    - Once the analysis is complete, the AI's recommendations will be displayed under **"AI Analysis"**.
    - You can click the **“Download LLM Output”** button to download the AI-generated recommendations as a `.txt` file for future reference.

    """
    st.markdown(User_Instructions)

#------------------------------------------------------------------------
# Functions
#------------------------------------------------------------------------
# Set the Hugging Face API key
# Retrieve Hugging Face API key from environment variables
hf_api_key = os.getenv('HF_API_KEY')
if not hf_api_key:
    raise ValueError("HF_API_KEY not set in environment variables")

# Create the Hugging Face inference client
client = InferenceClient(api_key=hf_api_key)

# Constants
INTERVENTION_COLUMN = 'Did the intervention happen today?'
ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'

def safe_convert_to_time(series, format_str='%I:%M %p'):
    try:
        converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
        if format_str:
            return converted.dt.strftime(format_str)
        return converted
    except Exception as e:
        print(f"Error converting series to time: {e}")
        return series

def safe_convert_to_datetime(series, format_str=None):
    try:
        # Attempt to convert to datetime, ignoring errors
        converted = pd.to_datetime(series, errors='coerce')
        if format_str:
            # Format if a format string is provided
            return converted.dt.strftime(format_str)
        return converted
    except Exception as e:
        print(f"Error converting series to datetime: {e}")
        return series

def format_session_data(df):
    # Format "Date of Session" and "Timestamp" columns with safe conversion
    df['Date of Session'] = safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y')
    df['Timestamp'] = safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
    df['Session Start Time'] = safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
    df['Session End Time'] = safe_convert_to_time(df['Session End Time'], '%I:%M %p')

    # Reorder columns
    df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]]

    return df

def main():
    st.title("Intervention Program Analysis")

    # File uploader
    uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])

    if uploaded_file is not None:
        try:
            # Read the Excel file into a DataFrame
            df = pd.read_excel(uploaded_file)

            # Format the session data
            df = format_session_data(df)

            # Replace student names with initials
            df = replace_student_names_with_initials(df)

            st.subheader("Uploaded Data")
            st.write(df)

            # Ensure expected column is available
            if INTERVENTION_COLUMN not in df.columns:
                st.error(f"Expected column '{INTERVENTION_COLUMN}' not found.")
                return

            # Clean up column names
            df.columns = df.columns.str.strip()

            # Compute Intervention Session Statistics
            intervention_stats = compute_intervention_statistics(df)
            st.subheader("Intervention Session Statistics")
            st.write(intervention_stats)

            # Two-column layout for the visualization and intervention frequency
            col1, col2 = st.columns([3, 1])  # Set the column width ratio
            
            with col1:
                intervention_fig = plot_intervention_statistics(intervention_stats)
            
            with col2:
                intervention_frequency = intervention_stats['Intervention Frequency (%)'].values[0]
                # Display the "Intervention Frequency (%)" text
                st.markdown("<h3 style='color: #358E66;'>Intervention Frequency</h3>", unsafe_allow_html=True)
                # Display the frequency value below it
                st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)

            # Add download button for Intervention Session Statistics chart
            download_chart(intervention_fig, "intervention_statistics_chart.png")

            # Compute Student Metrics
            student_metrics_df = compute_student_metrics(df)
            st.subheader("Student Metrics")
            st.write(student_metrics_df)

            # Compute Student Metric Averages
            attendance_avg_stats, engagement_avg_stats = compute_average_metrics(student_metrics_df)

            # Visualization for Student Metrics
            student_metrics_fig = plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)

            # # Two-column layout for the visualization and intervention frequency
            # col1, col2 = st.columns([3, 1])  # Set the column width ratio
            
            # with col1:
            #     student_metrics_fig = plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
                      
            # with col2:
            #     # Display the "Attendance Average (%)" text and value
            #     st.markdown("<h3 style='color: #358E66;'>Attendance Average (%)</h3>", unsafe_allow_html=True)
            #     if attendance_avg_stats is not None:
            #         st.markdown(f"<h2 style='color: #358E66;'>{attendance_avg_stats}%</h2>", unsafe_allow_html=True)
            #     else:
            #         st.markdown("<h2 style='color: #358E66;'>N/A</h2>", unsafe_allow_html=True)
                    
            #     # Display the "Engagement Average (%)" text and value
            #     st.markdown("<h3 style='color: #358E66;'>Engagement Average (%)</h3>", unsafe_allow_html=True)
            #     if engagement_avg_stats is not None:
            #         st.markdown(f"<h2 style='color: #358E66; margin-top: 0px; margin-bottom: 0px;'>{engagement_avg_stats}%</h2>", unsafe_allow_html=True)
            #     else:
            #         st.markdown("<h2 style='color: #358E66;'>N/A</h2>", unsafe_allow_html=True)

            # Add download button for Student Metrics chart
            download_chart(student_metrics_fig, "student_metrics_chart.png")

            # Prepare input for the language model
            llm_input = prepare_llm_input(student_metrics_df)

            # Generate Notes and Recommendations using Hugging Face LLM
            with st.spinner("Generating AI analysis..."):
                recommendations = prompt_response_from_hf_llm(llm_input)

            st.subheader("AI Analysis")
            st.markdown(recommendations)

            # Add download button for LLM output
            download_llm_output(recommendations, "llm_output.txt")

        except Exception as e:
            st.error(f"Error reading the file: {str(e)}")

def replace_student_names_with_initials(df):
    """Replace student names in column headers with initials."""
    updated_columns = []
    for col in df.columns:
        if col.startswith('Student Attendance'):
            # Extract the name from the column header
            match = re.match(r'Student Attendance \[(.+?)\]', col)
            if match:
                name = match.group(1)
                # Split the name into parts (first and last name)
                name_parts = name.split()
                # Convert the name to initials
                if len(name_parts) == 1:
                    initials = name_parts[0][0]  # Just take the first letter
                else:
                    initials = ''.join([part[0] for part in name_parts])  # Take the first letter of each part
                # Update the column name
                updated_columns.append(f'Student Attendance [{initials}]')
            else:
                updated_columns.append(col)
        else:
            updated_columns.append(col)
    df.columns = updated_columns
    return df

def compute_intervention_statistics(df):
    # Total Number of Days Available
    total_days = len(df)

    # Intervention Sessions Held
    sessions_held = df[INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()

    # Intervention Sessions Not Held
    sessions_not_held = df[INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum()

    # Intervention Frequency (%)
    intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
    intervention_frequency = round(intervention_frequency, 0)

    # Reorder columns as specified
    stats = {
        'Intervention Frequency (%)': [intervention_frequency],
        'Intervention Sessions Held': [sessions_held],
        'Intervention Sessions Not Held': [sessions_not_held],
        'Total Number of Days Available': [total_days]
    }
    stats_df = pd.DataFrame(stats)
    return stats_df

def plot_intervention_statistics(intervention_stats):
    # Create a stacked bar chart for sessions held and not held
    sessions_held = intervention_stats['Intervention Sessions Held'].values[0]
    sessions_not_held = intervention_stats['Intervention Sessions Not Held'].values[0]

    fig, ax = plt.subplots()
    # Plot "Held" on the bottom
    ax.bar(['Intervention Sessions'], [sessions_held], label='Held', color='#358E66')
    # Plot "Not Held" on top of "Held"
    ax.bar(['Intervention Sessions'], [sessions_not_held], bottom=[sessions_held], label='Not Held', color='#91D6B8')

    # Display values on the bars
    ax.text(0, sessions_held / 2, str(sessions_held), ha='center', va='center', color='white', 
            fontweight='bold', fontsize=14)
    ax.text(0, sessions_held + sessions_not_held / 2, str(sessions_not_held), ha='center', va='center', color='black', 
            fontweight='bold', fontsize=14)

    # Update chart settings
    ax.set_ylabel('Frequency')
    ax.set_title('Intervention Sessions Held vs Not Held', fontsize=16)  # Optional: Increased title font size
    # Reverse the legend order to match the new stacking order
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(handles[::-1], labels[::-1])

    # Hide the top and right spines
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    
    st.pyplot(fig)

    return fig

def compute_student_metrics(df):
    # Filter DataFrame for sessions where intervention happened
    intervention_df = df[df[INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
    intervention_sessions_held = len(intervention_df)

    # Get list of student columns
    student_columns = [col for col in df.columns if col.startswith('Student Attendance')]

    student_metrics = {}

    for col in student_columns:
        student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
        # Get the attendance data for the student
        student_data = intervention_df[[col]].copy()

        # Treat blank entries as 'Absent'
        student_data[col] = student_data[col].fillna('Absent')

        # Assign attendance values
        attendance_values = student_data[col].apply(lambda x: 1 if x in [
            ENGAGED_STR,
            PARTIALLY_ENGAGED_STR,
            NOT_ENGAGED_STR
        ] else 0)

        # Number of Sessions Attended
        sessions_attended = attendance_values.sum()

        # Attendance (%)
        attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
        attendance_pct = round(attendance_pct)  # Round to whole number

        # Calculate the number of students in each engagement category
        engagement_counts = {
            'Engaged': 0,
            'Partially Engaged': 0,
            'Not Engaged': 0,
            'Absent': 0
        }

        # Count the engagement states
        for x in student_data[col]:
            if x == ENGAGED_STR:
                engagement_counts['Engaged'] += 1
            elif x == PARTIALLY_ENGAGED_STR:
                engagement_counts['Partially Engaged'] += 1
            elif x == NOT_ENGAGED_STR:
                engagement_counts['Not Engaged'] += 1
            else:
                engagement_counts['Absent'] += 1  # Count as Absent if not engaged

        # Calculate percentages for engagement states
        total_sessions = sum(engagement_counts.values())
        
        # Engagement (%)
        engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
        engagement_pct = round(engagement_pct)

        engaged_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
        engaged_pct = round(engaged_pct)

        partially_engaged_pct = (engagement_counts['Partially Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
        partially_engaged_pct = round(partially_engaged_pct)

        not_engaged_pct = (engagement_counts['Not Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
        not_engaged_pct = round(not_engaged_pct)

        absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
        absent_pct = round(absent_pct)

        # Store metrics in the required order
        student_metrics[student_name] = {
            'Attendance (%)': attendance_pct,
            'Attendance #': sessions_attended,  # Raw number of sessions attended
            'Engagement (%)': engagement_pct,
            'Engaged (%)': engaged_pct,
            'Partially Engaged (%)': partially_engaged_pct,
            'Not Engaged (%)': not_engaged_pct,
            'Absent (%)': absent_pct
        }

    # Create a DataFrame from student_metrics
    student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
    student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
    return student_metrics_df

def compute_average_metrics(student_metrics_df):
    # Calculate the attendance and engagement average percentages across students
    attendance_avg_stats = student_metrics_df['Attendance (%)'].mean()  # Calculate the average attendance percentage
    engagement_avg_stats = student_metrics_df['Engagement (%)'].mean()  # Calculate the average engagement percentage
    
    # Round the averages to make them whole numbers
    attendance_avg_stats = round(attendance_avg_stats)
    engagement_avg_stats = round(engagement_avg_stats)
    
    return attendance_avg_stats, engagement_avg_stats

def plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats):
    # Create the figure and axis
    fig, ax = plt.subplots(figsize=(10, 6))  # Increased figure size for better readability

    # Width for the bars
    bar_width = 0.35  # Width of the bars

    index = range(len(student_metrics_df))  # Index for each student

    # Plot Attendance and Engagement bars side by side
    attendance_bars = ax.bar([i - bar_width / 2 for i in index], 
                              student_metrics_df['Attendance (%)'], 
                              width=bar_width, label='Attendance (%)', 
                              color='#005288', alpha=0.7)
    engagement_bars = ax.bar([i + bar_width / 2 for i in index], 
                              student_metrics_df['Engagement (%)'], 
                              width=bar_width, label='Engagement (%)', 
                              color='#3AB0FF', alpha=0.7)

    # Add labels to each bar
    for bar in attendance_bars:
        height = bar.get_height()
        ax.text(bar.get_x() + bar.get_width() / 2, height, 
                f'{height:.0f}%', ha='center', va='bottom', color='black')  # No decimal for integer percentage

    for bar in engagement_bars:
        height = bar.get_height()
        ax.text(bar.get_x() + bar.get_width() / 2, height, 
                f'{height:.0f}%', ha='center', va='bottom', color='black')  # No decimal for integer percentage

    # Add average lines for attendance and engagement
    ax.axhline(
        y=attendance_avg_stats,
        color='#005288',
        linestyle='--',
        linewidth=1.5,
        label=f'Attendance Average: {attendance_avg_stats}%'
    )
    ax.axhline(
        y=engagement_avg_stats,
        color='#3AB0FF',
        linestyle='--',
        linewidth=1.5,
        label=f'Engagement Average: {engagement_avg_stats}%'
    )
    
    # Set labels, title, and legend
    ax.set_xlabel('Student')
    ax.set_ylabel('Percentage (%)')
    ax.set_title('Student Attendance and Engagement Metrics')
    # ax.legend()
    # ax.legend(loc='upper right', bbox_to_anchor=(1.25, 1), borderaxespad=0.)
    ax.legend(loc='upper right', frameon=False)
    ax.set_xticks(index)  # Set x-ticks to the index
    ax.set_xticklabels(student_metrics_df['Student'], rotation=0, ha='right')  # Set student names as x-tick labels
    # Set the y-axis limits and tick locations
    ax.set_ylim(0, 119)  # Range from 0 to 100
    ax.yaxis.set_ticks(range(0, 119, 20))  # Increments of 20

    # Hide the top and right spines
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    # Display the plot
    plt.tight_layout()  # Adjust layout to fit elements
    # plt.show()  # Show the plot in a script environment (use st.pyplot(fig) in Streamlit)
    st.pyplot(fig)  # This line displays the plot

    return fig

def download_chart(fig, filename):
    # Create a buffer to hold the image data
    buffer = io.BytesIO()
    # Save the figure to the buffer
    fig.savefig(buffer, format='png')
    # Set the file pointer to the beginning
    buffer.seek(0)
    # Add a download button to Streamlit
    st.download_button(label="Download Chart", data=buffer, file_name=filename, mime='image/png', icon="📊", use_container_width=True)

def download_llm_output(content, filename):
    # Create a buffer to hold the text data
    buffer = io.BytesIO()
    buffer.write(content.encode('utf-8'))
    buffer.seek(0)
    # Add a download button to Streamlit
    st.download_button(label="Download AI Output", data=buffer, file_name=filename, mime='text/plain', icon="✏️", use_container_width=True)

def prepare_llm_input(student_metrics_df):
    # Convert the student metrics DataFrame to a string
    metrics_str = student_metrics_df.to_string(index=False)
    llm_input = f"""
Based on the following student metrics:

{metrics_str}

Provide:

1. Notes and Key Takeaways: Summarize the data, highlight students with the lowest and highest attendance and engagement percentages, identify students who may need adjustments to their intervention due to low attendance or engagement, and highlight students who are showing strong performance. 

2. Recommendations and Next Steps: Provide interpretations based on the analysis and suggest possible next steps or strategies to improve student outcomes.
"""
    return llm_input

    
# def prompt_response_from_hf_llm(llm_input):
#     # Generate the refined prompt using Hugging Face API
#     response = client.chat.completions.create(
#         model="meta-llama/Llama-3.1-70B-Instruct",
#         messages=[
#             {"role": "user", "content": llm_input}
#         ],
#         stream=True,
#         temperature=0.5,
#         max_tokens=1024,
#         top_p=0.7
#     )

def prompt_response_from_hf_llm(llm_input):
    # Define a system prompt to guide the model's responses
    system_prompt = """
    <Persona> An expert Implementation Specialist at Michigan's Multi-Tiered System of Support Technical Assistance Center (MiMTSS TA Center) with deep expertise in SWPBIS, SEL, Structured Literacy, Science of Reading, and family engagement practices.</Persona> 
    <Task> Analyze educational data and provide evidence-based recommendations for improving student outcomes across multiple tiers of support, drawing from established frameworks in behavioral interventions, literacy instruction, and family engagement.</Task> 
    <Context> Operating within Michigan's educational system to support schools in implementing multi-tiered support systems, with access to student metrics data and knowledge of state-specific educational requirements and MTSS frameworks. </Context> 
    <Format> Deliver insights through clear, actionable recommendations supported by data analysis, incorporating technical expertise while maintaining accessibility for educators and administrators at various levels of MTSS implementation.</Format>
    """
    
    # Generate the refined prompt using Hugging Face API
    response = client.chat.completions.create(
        model="meta-llama/Llama-3.1-70B-Instruct",
        messages=[
            {"role": "system", "content": system_prompt},  # Add system prompt here
            {"role": "user", "content": llm_input}
        ],
        stream=True,
        temperature=0.5,
        max_tokens=1024,
        top_p=0.7
    )
    
    # Combine messages if response is streamed
    response_content = ""
    for message in response:
        response_content += message.choices[0].delta.content

    return response_content.strip()

if __name__ == '__main__':
    main()