File size: 26,339 Bytes
48f9ec0 208c4cb 48f9ec0 208c4cb 48f9ec0 208c4cb 48f9ec0 a470a17 208c4cb 48f9ec0 e157853 48f9ec0 208c4cb 48f9ec0 208c4cb 48f9ec0 d234974 6808b16 f1740fa 6808b16 f1740fa 6808b16 0918e3b 6808b16 0918e3b 48f9ec0 7437eff 48f9ec0 7437eff 0918e3b 51524e7 7437eff 0a3e3df 48f9ec0 51524e7 48f9ec0 7437eff 48f9ec0 0a3e3df 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 f6d1135 fcd1755 51524e7 b0c1d78 fcd1755 51524e7 fcd1755 51524e7 b0c1d78 3040988 b0c1d78 3040988 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 af8357b 15f1920 7be86a5 f5e1694 7be86a5 3040988 7be86a5 f5e1694 7be86a5 f5e1694 7437eff 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 7607606 48f9ec0 51524e7 48f9ec0 51524e7 48f9ec0 51524e7 48f9ec0 fcd1755 48f9ec0 51524e7 7607606 48f9ec0 51524e7 7607606 b0c1d78 7574679 42cf179 48f9ec0 2ba307e 48f9ec0 7437eff 48f9ec0 f1740fa 48f9ec0 bb7e61f 48f9ec0 bb7e61f 48f9ec0 bb7e61f 48f9ec0 bb7e61f 48f9ec0 bb7e61f f1740fa bb7e61f 48f9ec0 4eb7186 7607606 bb7e61f 48f9ec0 7251a07 48f9ec0 f5e1694 38faed4 6808b16 4eb7186 89ef316 0caf191 7607606 0caf191 89ef316 d234974 0caf191 4eb7186 89ef316 d234974 0caf191 4eb7186 0caf191 7eb5777 32c99eb 42cf179 32c99eb 920d0ae 32c99eb 7eb5777 920d0ae b944f35 920d0ae 6808b16 0caf191 da9b757 48f9ec0 0caf191 67c294a 48f9ec0 ad18331 48f9ec0 6ea871f 48f9ec0 6ea871f 48f9ec0 6ea871f 48f9ec0 6ea871f 48f9ec0 208c4cb 48f9ec0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
# CHARTS + DOWNLOAD + NO NAMES
# intervention_analysis_app.py
#------------------------------------------------------------------------
# Import Modules
#------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import io
import re
# from transformers import pipeline
from huggingface_hub import InferenceClient
import os
from pathlib import Path
from dotenv import load_dotenv
load_dotenv()
#------------------------------------------------------------------------
# Configurations
#------------------------------------------------------------------------
# Streamlit page setup
st.set_page_config(
page_title="Intervention Program Analysis",
page_icon=":bar_chart:",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'mailto:[email protected]',
'About': "This app is built to support spreadsheet analysis"
}
)
#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------
# logo
main_body_logo = "mimtss.png"
sidebar_logo = "mimtss_small.png"
st.logo(sidebar_logo, icon_image=main_body_logo)
with st.sidebar:
# Password input field
# password = st.text_input("Enter Password:", type="password")
# Set the desired width in pixels
image_width = 300
# Define the path to the image
image_path = "mimtss.png"
# Display the image
st.image(image_path, width=image_width)
# Toggle for Help and Report a Bug
with st.expander("Need help and report a bug"):
st.write("""
**Contact**: Cheyne LeVesseur, PhD
**Email**: [email protected]
""")
st.divider()
st.subheader('User Instructions')
# Principles text with Markdown formatting
User_Instructions = """
- **Step 1**: Upload your Excel file.
- **Step 2**: Anonymization – student names are replaced with initials for privacy.
- **Step 3**: Review anonymized data.
- **Step 4**: View **intervention session statistics**.
- **Step 5**: Review **student attendance and engagement metrics**.
- **Step 6**: Review AI-generated **insights and recommendations**.
### **Privacy Assurance**
- **No full names** are ever displayed or sent to the AI model—only initials are used.
- This ensures that sensitive data remains protected throughout the entire process.
### **Detailed Instructions**
#### **1. Upload Your Excel File**
- Start by uploading an Excel file that contains intervention data.
- Click on the **“Upload your Excel file”** button and select your `.xlsx` file from your computer.
**Note**: Your file should have columns like "Did the intervention happen today?" and "Student Attendance [FirstName LastName]" for the analysis to work correctly.
#### **2. Automated Name Anonymization**
- Once the file is uploaded, the app will **automatically replace student names with initials** in the "Student Attendance" columns.
- For example, **"Student Attendance [Cheyne LeVesseur]"** will be displayed as **"Student Attendance [CL]"**.
- If the student only has a first name, like **"Student Attendance [Cheyne]"**, it will be displayed as **"Student Attendance [C]"**.
- This anonymization helps to **protect student privacy**, ensuring that full names are not visible or sent to the AI language model.
#### **3. Review the Uploaded Data**
- You will see the entire table of anonymized data to verify that the information has been uploaded correctly and that names have been replaced with initials.
#### **4. Intervention Session Statistics**
- The app will calculate and display statistics related to intervention sessions, such as:
- **Total Number of Days Available**
- **Intervention Sessions Held**
- **Intervention Sessions Not Held**
- **Intervention Frequency (%)**
- A **stacked bar chart** will be shown to visualize the number of sessions held versus not held.
- If you need to save the visualization, click the **“Download Chart”** button to download it as a `.png` file.
#### **5. Student Metrics Analysis**
- The app will also calculate metrics for each student:
- **Attendance (%)** – The percentage of intervention sessions attended.
- **Engagement (%)** – The level of engagement during attended sessions.
- These metrics will be presented in a **line graph** that shows attendance and engagement for each student.
- You can click the **“Download Chart”** button to download the visualization as a `.png` file.
#### **6. Generate AI Analysis and Recommendations**
- The app will prepare data from the student metrics to provide notes, key takeaways, and suggestions for improving outcomes using an **AI language model**.
- You will see a **spinner** labeled **“Generating AI analysis…”** while the AI processes the data.
- This step may take a little longer, but the spinner ensures you know that the system is working.
- Once the analysis is complete, the AI's recommendations will be displayed under **"AI Analysis"**.
- You can click the **“Download LLM Output”** button to download the AI-generated recommendations as a `.txt` file for future reference.
"""
st.markdown(User_Instructions)
#------------------------------------------------------------------------
# Functions
#------------------------------------------------------------------------
# Set the Hugging Face API key
# Retrieve Hugging Face API key from environment variables
hf_api_key = os.getenv('HF_API_KEY')
if not hf_api_key:
raise ValueError("HF_API_KEY not set in environment variables")
# Create the Hugging Face inference client
client = InferenceClient(api_key=hf_api_key)
# Constants
INTERVENTION_COLUMN = 'Did the intervention happen today?'
ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'
def safe_convert_to_time(series, format_str='%I:%M %p'):
try:
converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
if format_str:
return converted.dt.strftime(format_str)
return converted
except Exception as e:
print(f"Error converting series to time: {e}")
return series
def safe_convert_to_datetime(series, format_str=None):
try:
# Attempt to convert to datetime, ignoring errors
converted = pd.to_datetime(series, errors='coerce')
if format_str:
# Format if a format string is provided
return converted.dt.strftime(format_str)
return converted
except Exception as e:
print(f"Error converting series to datetime: {e}")
return series
def format_session_data(df):
# Format "Date of Session" and "Timestamp" columns with safe conversion
df['Date of Session'] = safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y')
df['Timestamp'] = safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
df['Session Start Time'] = safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
df['Session End Time'] = safe_convert_to_time(df['Session End Time'], '%I:%M %p')
# Reorder columns
df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]]
return df
def main():
st.title("Intervention Program Analysis")
# File uploader
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
if uploaded_file is not None:
try:
# Read the Excel file into a DataFrame
df = pd.read_excel(uploaded_file)
# Format the session data
df = format_session_data(df)
# Replace student names with initials
df = replace_student_names_with_initials(df)
st.subheader("Uploaded Data")
st.write(df)
# Ensure expected column is available
if INTERVENTION_COLUMN not in df.columns:
st.error(f"Expected column '{INTERVENTION_COLUMN}' not found.")
return
# Clean up column names
df.columns = df.columns.str.strip()
# Compute Intervention Session Statistics
intervention_stats = compute_intervention_statistics(df)
st.subheader("Intervention Session Statistics")
st.write(intervention_stats)
# Two-column layout for the visualization and intervention frequency
col1, col2 = st.columns([3, 1]) # Set the column width ratio
with col1:
intervention_fig = plot_intervention_statistics(intervention_stats)
with col2:
intervention_frequency = intervention_stats['Intervention Frequency (%)'].values[0]
# Display the "Intervention Frequency (%)" text
st.markdown("<h3 style='color: #358E66;'>Intervention Frequency</h3>", unsafe_allow_html=True)
# Display the frequency value below it
st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)
# Add download button for Intervention Session Statistics chart
download_chart(intervention_fig, "intervention_statistics_chart.png")
# Compute Student Metrics
student_metrics_df = compute_student_metrics(df)
st.subheader("Student Metrics")
st.write(student_metrics_df)
# Compute Student Metric Averages
attendance_avg_stats, engagement_avg_stats = compute_average_metrics(student_metrics_df)
# Visualization for Student Metrics
student_metrics_fig = plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
# # Two-column layout for the visualization and intervention frequency
# col1, col2 = st.columns([3, 1]) # Set the column width ratio
# with col1:
# student_metrics_fig = plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
# with col2:
# # Display the "Attendance Average (%)" text and value
# st.markdown("<h3 style='color: #358E66;'>Attendance Average (%)</h3>", unsafe_allow_html=True)
# if attendance_avg_stats is not None:
# st.markdown(f"<h2 style='color: #358E66;'>{attendance_avg_stats}%</h2>", unsafe_allow_html=True)
# else:
# st.markdown("<h2 style='color: #358E66;'>N/A</h2>", unsafe_allow_html=True)
# # Display the "Engagement Average (%)" text and value
# st.markdown("<h3 style='color: #358E66;'>Engagement Average (%)</h3>", unsafe_allow_html=True)
# if engagement_avg_stats is not None:
# st.markdown(f"<h2 style='color: #358E66; margin-top: 0px; margin-bottom: 0px;'>{engagement_avg_stats}%</h2>", unsafe_allow_html=True)
# else:
# st.markdown("<h2 style='color: #358E66;'>N/A</h2>", unsafe_allow_html=True)
# Add download button for Student Metrics chart
download_chart(student_metrics_fig, "student_metrics_chart.png")
# Prepare input for the language model
llm_input = prepare_llm_input(student_metrics_df)
# Generate Notes and Recommendations using Hugging Face LLM
with st.spinner("Generating AI analysis..."):
recommendations = prompt_response_from_hf_llm(llm_input)
st.subheader("AI Analysis")
st.markdown(recommendations)
# Add download button for LLM output
download_llm_output(recommendations, "llm_output.txt")
except Exception as e:
st.error(f"Error reading the file: {str(e)}")
def replace_student_names_with_initials(df):
"""Replace student names in column headers with initials."""
updated_columns = []
for col in df.columns:
if col.startswith('Student Attendance'):
# Extract the name from the column header
match = re.match(r'Student Attendance \[(.+?)\]', col)
if match:
name = match.group(1)
# Split the name into parts (first and last name)
name_parts = name.split()
# Convert the name to initials
if len(name_parts) == 1:
initials = name_parts[0][0] # Just take the first letter
else:
initials = ''.join([part[0] for part in name_parts]) # Take the first letter of each part
# Update the column name
updated_columns.append(f'Student Attendance [{initials}]')
else:
updated_columns.append(col)
else:
updated_columns.append(col)
df.columns = updated_columns
return df
def compute_intervention_statistics(df):
# Total Number of Days Available
total_days = len(df)
# Intervention Sessions Held
sessions_held = df[INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()
# Intervention Sessions Not Held
sessions_not_held = df[INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum()
# Intervention Frequency (%)
intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
intervention_frequency = round(intervention_frequency, 0)
# Reorder columns as specified
stats = {
'Intervention Frequency (%)': [intervention_frequency],
'Intervention Sessions Held': [sessions_held],
'Intervention Sessions Not Held': [sessions_not_held],
'Total Number of Days Available': [total_days]
}
stats_df = pd.DataFrame(stats)
return stats_df
def plot_intervention_statistics(intervention_stats):
# Create a stacked bar chart for sessions held and not held
sessions_held = intervention_stats['Intervention Sessions Held'].values[0]
sessions_not_held = intervention_stats['Intervention Sessions Not Held'].values[0]
fig, ax = plt.subplots()
# Plot "Held" on the bottom
ax.bar(['Intervention Sessions'], [sessions_held], label='Held', color='#358E66')
# Plot "Not Held" on top of "Held"
ax.bar(['Intervention Sessions'], [sessions_not_held], bottom=[sessions_held], label='Not Held', color='#91D6B8')
# Display values on the bars
ax.text(0, sessions_held / 2, str(sessions_held), ha='center', va='center', color='white',
fontweight='bold', fontsize=14)
ax.text(0, sessions_held + sessions_not_held / 2, str(sessions_not_held), ha='center', va='center', color='black',
fontweight='bold', fontsize=14)
# Update chart settings
ax.set_ylabel('Frequency')
ax.set_title('Intervention Sessions Held vs Not Held', fontsize=16) # Optional: Increased title font size
# Reverse the legend order to match the new stacking order
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles[::-1], labels[::-1])
# Hide the top and right spines
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
st.pyplot(fig)
return fig
def compute_student_metrics(df):
# Filter DataFrame for sessions where intervention happened
intervention_df = df[df[INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
intervention_sessions_held = len(intervention_df)
# Get list of student columns
student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
student_metrics = {}
for col in student_columns:
student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
# Get the attendance data for the student
student_data = intervention_df[[col]].copy()
# Treat blank entries as 'Absent'
student_data[col] = student_data[col].fillna('Absent')
# Assign attendance values
attendance_values = student_data[col].apply(lambda x: 1 if x in [
ENGAGED_STR,
PARTIALLY_ENGAGED_STR,
NOT_ENGAGED_STR
] else 0)
# Number of Sessions Attended
sessions_attended = attendance_values.sum()
# Attendance (%)
attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
attendance_pct = round(attendance_pct) # Round to whole number
# Calculate the number of students in each engagement category
engagement_counts = {
'Engaged': 0,
'Partially Engaged': 0,
'Not Engaged': 0,
'Absent': 0
}
# Count the engagement states
for x in student_data[col]:
if x == ENGAGED_STR:
engagement_counts['Engaged'] += 1
elif x == PARTIALLY_ENGAGED_STR:
engagement_counts['Partially Engaged'] += 1
elif x == NOT_ENGAGED_STR:
engagement_counts['Not Engaged'] += 1
else:
engagement_counts['Absent'] += 1 # Count as Absent if not engaged
# Calculate percentages for engagement states
total_sessions = sum(engagement_counts.values())
# Engagement (%)
engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
engagement_pct = round(engagement_pct)
engaged_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
engaged_pct = round(engaged_pct)
partially_engaged_pct = (engagement_counts['Partially Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
partially_engaged_pct = round(partially_engaged_pct)
not_engaged_pct = (engagement_counts['Not Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
not_engaged_pct = round(not_engaged_pct)
absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
absent_pct = round(absent_pct)
# Store metrics in the required order
student_metrics[student_name] = {
'Attendance (%)': attendance_pct,
'Attendance #': sessions_attended, # Raw number of sessions attended
'Engagement (%)': engagement_pct,
'Engaged (%)': engaged_pct,
'Partially Engaged (%)': partially_engaged_pct,
'Not Engaged (%)': not_engaged_pct,
'Absent (%)': absent_pct
}
# Create a DataFrame from student_metrics
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
return student_metrics_df
def compute_average_metrics(student_metrics_df):
# Calculate the attendance and engagement average percentages across students
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage
engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Calculate the average engagement percentage
# Round the averages to make them whole numbers
attendance_avg_stats = round(attendance_avg_stats)
engagement_avg_stats = round(engagement_avg_stats)
return attendance_avg_stats, engagement_avg_stats
def plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats):
# Create the figure and axis
fig, ax = plt.subplots(figsize=(10, 6)) # Increased figure size for better readability
# Width for the bars
bar_width = 0.35 # Width of the bars
index = range(len(student_metrics_df)) # Index for each student
# Plot Attendance and Engagement bars side by side
attendance_bars = ax.bar([i - bar_width / 2 for i in index],
student_metrics_df['Attendance (%)'],
width=bar_width, label='Attendance (%)',
color='#005288', alpha=0.7)
engagement_bars = ax.bar([i + bar_width / 2 for i in index],
student_metrics_df['Engagement (%)'],
width=bar_width, label='Engagement (%)',
color='#3AB0FF', alpha=0.7)
# Add labels to each bar
for bar in attendance_bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width() / 2, height,
f'{height:.0f}%', ha='center', va='bottom', color='black') # No decimal for integer percentage
for bar in engagement_bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width() / 2, height,
f'{height:.0f}%', ha='center', va='bottom', color='black') # No decimal for integer percentage
# Add average lines for attendance and engagement
ax.axhline(
y=attendance_avg_stats,
color='#005288',
linestyle='--',
linewidth=1.5,
label=f'Attendance Average: {attendance_avg_stats}%'
)
ax.axhline(
y=engagement_avg_stats,
color='#3AB0FF',
linestyle='--',
linewidth=1.5,
label=f'Engagement Average: {engagement_avg_stats}%'
)
# Set labels, title, and legend
ax.set_xlabel('Student')
ax.set_ylabel('Percentage (%)')
ax.set_title('Student Attendance and Engagement Metrics')
# ax.legend()
# ax.legend(loc='upper right', bbox_to_anchor=(1.25, 1), borderaxespad=0.)
ax.legend(loc='upper right', frameon=False)
ax.set_xticks(index) # Set x-ticks to the index
ax.set_xticklabels(student_metrics_df['Student'], rotation=0, ha='right') # Set student names as x-tick labels
# Set the y-axis limits and tick locations
ax.set_ylim(0, 119) # Range from 0 to 100
ax.yaxis.set_ticks(range(0, 119, 20)) # Increments of 20
# Hide the top and right spines
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Display the plot
plt.tight_layout() # Adjust layout to fit elements
# plt.show() # Show the plot in a script environment (use st.pyplot(fig) in Streamlit)
st.pyplot(fig) # This line displays the plot
return fig
def download_chart(fig, filename):
# Create a buffer to hold the image data
buffer = io.BytesIO()
# Save the figure to the buffer
fig.savefig(buffer, format='png')
# Set the file pointer to the beginning
buffer.seek(0)
# Add a download button to Streamlit
st.download_button(label="Download Chart", data=buffer, file_name=filename, mime='image/png', icon="📊", use_container_width=True)
def download_llm_output(content, filename):
# Create a buffer to hold the text data
buffer = io.BytesIO()
buffer.write(content.encode('utf-8'))
buffer.seek(0)
# Add a download button to Streamlit
st.download_button(label="Download AI Output", data=buffer, file_name=filename, mime='text/plain', icon="✏️", use_container_width=True)
def prepare_llm_input(student_metrics_df):
# Convert the student metrics DataFrame to a string
metrics_str = student_metrics_df.to_string(index=False)
llm_input = f"""
Based on the following student metrics:
{metrics_str}
Provide:
1. Notes and Key Takeaways: Summarize the data, highlight students with the lowest and highest attendance and engagement percentages, identify students who may need adjustments to their intervention due to low attendance or engagement, and highlight students who are showing strong performance.
2. Recommendations and Next Steps: Provide interpretations based on the analysis and suggest possible next steps or strategies to improve student outcomes.
"""
return llm_input
# def prompt_response_from_hf_llm(llm_input):
# # Generate the refined prompt using Hugging Face API
# response = client.chat.completions.create(
# model="meta-llama/Llama-3.1-70B-Instruct",
# messages=[
# {"role": "user", "content": llm_input}
# ],
# stream=True,
# temperature=0.5,
# max_tokens=1024,
# top_p=0.7
# )
def prompt_response_from_hf_llm(llm_input):
# Define a system prompt to guide the model's responses
system_prompt = """
<Persona> An expert Implementation Specialist at Michigan's Multi-Tiered System of Support Technical Assistance Center (MiMTSS TA Center) with deep expertise in SWPBIS, SEL, Structured Literacy, Science of Reading, and family engagement practices.</Persona>
<Task> Analyze educational data and provide evidence-based recommendations for improving student outcomes across multiple tiers of support, drawing from established frameworks in behavioral interventions, literacy instruction, and family engagement.</Task>
<Context> Operating within Michigan's educational system to support schools in implementing multi-tiered support systems, with access to student metrics data and knowledge of state-specific educational requirements and MTSS frameworks. </Context>
<Format> Deliver insights through clear, actionable recommendations supported by data analysis, incorporating technical expertise while maintaining accessibility for educators and administrators at various levels of MTSS implementation.</Format>
"""
# Generate the refined prompt using Hugging Face API
response = client.chat.completions.create(
model="meta-llama/Llama-3.1-70B-Instruct",
messages=[
{"role": "system", "content": system_prompt}, # Add system prompt here
{"role": "user", "content": llm_input}
],
stream=True,
temperature=0.5,
max_tokens=1024,
top_p=0.7
)
# Combine messages if response is streamed
response_content = ""
for message in response:
response_content += message.choices[0].delta.content
return response_content.strip()
if __name__ == '__main__':
main() |