File size: 19,238 Bytes
48f9ec0 208c4cb 48f9ec0 208c4cb 48f9ec0 208c4cb 48f9ec0 208c4cb 48f9ec0 e157853 48f9ec0 208c4cb 48f9ec0 208c4cb 48f9ec0 6808b16 0918e3b 6808b16 0918e3b 48f9ec0 7437eff 48f9ec0 7437eff 0918e3b 51524e7 7437eff 0a3e3df 48f9ec0 51524e7 48f9ec0 7437eff 48f9ec0 0a3e3df 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 f6d1135 fcd1755 51524e7 b0c1d78 fcd1755 51524e7 fcd1755 51524e7 b0c1d78 745f815 b0c1d78 51524e7 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 7437eff 48f9ec0 51524e7 48f9ec0 51524e7 48f9ec0 51524e7 48f9ec0 fcd1755 48f9ec0 51524e7 fcd1755 48f9ec0 51524e7 b0c1d78 48f9ec0 2ba307e 48f9ec0 7437eff 48f9ec0 6808b16 48f9ec0 6808b16 48f9ec0 6808b16 48f9ec0 6808b16 48f9ec0 6808b16 48f9ec0 208c4cb 48f9ec0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
# CHARTS + DOWNLOAD + NO NAMES
# intervention_analysis_app.py
#------------------------------------------------------------------------
# Import Modules
#------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import io
import re
# from transformers import pipeline
from huggingface_hub import InferenceClient
import os
from pathlib import Path
from dotenv import load_dotenv
load_dotenv()
#------------------------------------------------------------------------
# Configurations
#------------------------------------------------------------------------
# Streamlit page setup
st.set_page_config(
page_title="Intervention Program Analysis",
page_icon=":bar_chart:",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'mailto:[email protected]',
'About': "This app is built to support spreadsheet analysis"
}
)
#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------
with st.sidebar:
# Password input field
# password = st.text_input("Enter Password:", type="password")
# Set the desired width in pixels
image_width = 300
# Define the path to the image
image_path = "mimtss.png"
# Display the image
st.image(image_path, width=image_width)
# Toggle for Help and Report a Bug
with st.expander("Need help and report a bug"):
st.write("""
**Contact**: Cheyne LeVesseur, PhD
**Email**: [email protected]
""")
st.divider()
st.subheader('User Instructions')
# Principles text with Markdown formatting
User_Instructions = """
- **Step 1**: Upload your Excel file.
- **Step 2**: Anonymization – student names are replaced with initials for privacy.
- **Step 3**: Review anonymized data.
- **Step 4**: View **intervention session statistics**.
- **Step 5**: Review **student attendance and engagement metrics**.
- **Step 6**: Review AI-generated **insights and recommendations**.
### **Privacy Assurance**
- **No full names** are ever displayed or sent to the AI model—only initials are used.
- This ensures that sensitive data remains protected throughout the entire process.
### **Detailed Instructions**
#### **1. Upload Your Excel File**
- Start by uploading an Excel file that contains intervention data.
- Click on the **“Upload your Excel file”** button and select your `.xlsx` file from your computer.
**Note**: Your file should have columns like "Did the intervention happen today?" and "Student Attendance [FirstName LastName]" for the analysis to work correctly.
#### **2. Automated Name Anonymization**
- Once the file is uploaded, the app will **automatically replace student names with initials** in the "Student Attendance" columns.
- For example, **"Student Attendance [Cheyne LeVesseur]"** will be displayed as **"Student Attendance [CL]"**.
- If the student only has a first name, like **"Student Attendance [Cheyne]"**, it will be displayed as **"Student Attendance [C]"**.
- This anonymization helps to **protect student privacy**, ensuring that full names are not visible or sent to the AI language model.
#### **3. Review the Uploaded Data**
- You will see the entire table of anonymized data to verify that the information has been uploaded correctly and that names have been replaced with initials.
#### **4. Intervention Session Statistics**
- The app will calculate and display statistics related to intervention sessions, such as:
- **Total Number of Days Available**
- **Intervention Sessions Held**
- **Intervention Sessions Not Held**
- **Intervention Frequency (%)**
- A **stacked bar chart** will be shown to visualize the number of sessions held versus not held.
- If you need to save the visualization, click the **“Download Chart”** button to download it as a `.png` file.
#### **5. Student Metrics Analysis**
- The app will also calculate metrics for each student:
- **Attendance (%)** – The percentage of intervention sessions attended.
- **Engagement (%)** – The level of engagement during attended sessions.
- These metrics will be presented in a **line graph** that shows attendance and engagement for each student.
- You can click the **“Download Chart”** button to download the visualization as a `.png` file.
#### **6. Generate AI Analysis and Recommendations**
- The app will prepare data from the student metrics to provide notes, key takeaways, and suggestions for improving outcomes using an **AI language model**.
- You will see a **spinner** labeled **“Generating AI analysis…”** while the AI processes the data.
- This step may take a little longer, but the spinner ensures you know that the system is working.
- Once the analysis is complete, the AI's recommendations will be displayed under **"AI Analysis"**.
- You can click the **“Download LLM Output”** button to download the AI-generated recommendations as a `.txt` file for future reference.
"""
st.markdown(User_Instructions)
#------------------------------------------------------------------------
# Functions
#------------------------------------------------------------------------
# Set the Hugging Face API key
# Retrieve Hugging Face API key from environment variables
hf_api_key = os.getenv('HF_API_KEY')
if not hf_api_key:
raise ValueError("HF_API_KEY not set in environment variables")
# Create the Hugging Face inference client
client = InferenceClient(api_key=hf_api_key)
# Constants
INTERVENTION_COLUMN = 'Did the intervention happen today?'
ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'
def safe_convert_to_time(series, format_str=None):
try:
# Attempt to convert to time, ignoring errors
converted = pd.to_datetime(series, errors='coerce').dt.time
if format_str:
# Format if a format string is provided
return pd.Series([time.strftime(format_str) if time is not None else None for time in converted])
return converted
except Exception as e:
print(f"Error converting series to time: {e}")
return series
def safe_convert_to_datetime(series, format_str=None):
try:
# Attempt to convert to datetime, ignoring errors
converted = pd.to_datetime(series, errors='coerce')
if format_str:
# Format if a format string is provided
return converted.dt.strftime(format_str)
return converted
except Exception as e:
print(f"Error converting series to datetime: {e}")
return series
def format_session_data(df):
# Format "Date of Session" and "Timestamp" columns with safe conversion
df['Date of Session'] = safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y')
df['Timestamp'] = safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
df['Session Start Time'] = safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
df['Session End Time'] = safe_convert_to_time(df['Session End Time'], '%I:%M %p')
# Reorder columns
df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]]
return df
def main():
st.title("Intervention Program Analysis")
# File uploader
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
if uploaded_file is not None:
try:
# Read the Excel file into a DataFrame
df = pd.read_excel(uploaded_file)
# Format the session data
df = format_session_data(df)
# Replace student names with initials
df = replace_student_names_with_initials(df)
st.subheader("Uploaded Data")
st.write(df)
# Ensure expected column is available
if INTERVENTION_COLUMN not in df.columns:
st.error(f"Expected column '{INTERVENTION_COLUMN}' not found.")
return
# Clean up column names
df.columns = df.columns.str.strip()
# Compute Intervention Session Statistics
intervention_stats = compute_intervention_statistics(df)
st.subheader("Intervention Session Statistics")
st.write(intervention_stats)
# Two-column layout for the visualization and intervention frequency
col1, col2 = st.columns([3, 1]) # Set the column width ratio
with col1:
intervention_fig = plot_intervention_statistics(intervention_stats)
with col2:
intervention_frequency = intervention_stats['Intervention Frequency (%)'].values[0]
# Display the "Intervention Frequency (%)" text
st.markdown("<h2 style='color: #358E66;'>Intervention Frequency</h2>", unsafe_allow_html=True)
# Display the frequency value below it
st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)
# Add download button for Intervention Session Statistics chart
download_chart(intervention_fig, "intervention_statistics_chart.png")
# Compute Student Metrics
student_metrics_df = compute_student_metrics(df)
st.subheader("Student Metrics")
st.write(student_metrics_df)
# Visualization for Student Metrics
student_metrics_fig = plot_student_metrics(student_metrics_df)
# Add download button for Student Metrics chart
download_chart(student_metrics_fig, "student_metrics_chart.png")
# Prepare input for the language model
llm_input = prepare_llm_input(student_metrics_df)
# Generate Notes and Recommendations using Hugging Face LLM
with st.spinner("Generating AI analysis..."):
recommendations = prompt_response_from_hf_llm(llm_input)
st.subheader("AI Analysis")
st.markdown(recommendations)
# Add download button for LLM output
download_llm_output(recommendations, "llm_output.txt")
except Exception as e:
st.error(f"Error reading the file: {str(e)}")
def replace_student_names_with_initials(df):
"""Replace student names in column headers with initials."""
updated_columns = []
for col in df.columns:
if col.startswith('Student Attendance'):
# Extract the name from the column header
match = re.match(r'Student Attendance \[(.+?)\]', col)
if match:
name = match.group(1)
# Split the name into parts (first and last name)
name_parts = name.split()
# Convert the name to initials
if len(name_parts) == 1:
initials = name_parts[0][0] # Just take the first letter
else:
initials = ''.join([part[0] for part in name_parts]) # Take the first letter of each part
# Update the column name
updated_columns.append(f'Student Attendance [{initials}]')
else:
updated_columns.append(col)
else:
updated_columns.append(col)
df.columns = updated_columns
return df
def compute_intervention_statistics(df):
# Total Number of Days Available
total_days = len(df)
# Intervention Sessions Held
sessions_held = df[INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()
# Intervention Sessions Not Held
sessions_not_held = df[INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum()
# Intervention Frequency (%)
intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
intervention_frequency = round(intervention_frequency, 2)
# Reorder columns as specified
stats = {
'Intervention Frequency (%)': [intervention_frequency],
'Intervention Sessions Held': [sessions_held],
'Intervention Sessions Not Held': [sessions_not_held],
'Total Number of Days Available': [total_days]
}
stats_df = pd.DataFrame(stats)
return stats_df
def plot_intervention_statistics(intervention_stats):
# Create a stacked bar chart for sessions held and not held
sessions_held = intervention_stats['Intervention Sessions Held'].values[0]
sessions_not_held = intervention_stats['Intervention Sessions Not Held'].values[0]
fig, ax = plt.subplots()
# Plot "Held" on the bottom
ax.bar(['Intervention Sessions'], [sessions_held], label='Held', color='#358E66')
# Plot "Not Held" on top of "Held"
ax.bar(['Intervention Sessions'], [sessions_not_held], bottom=[sessions_held], label='Not Held', color='#91D6B8')
# Display values on the bars
ax.text(0, sessions_held / 2, str(sessions_held), ha='center', va='center', color='white')
ax.text(0, sessions_held + sessions_not_held / 2, str(sessions_not_held), ha='center', va='center', color='black')
# Update chart settings
ax.set_ylabel('Frequency')
# Reverse the legend order to match the new stacking order
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles[::-1], labels[::-1])
st.pyplot(fig)
return fig
def compute_student_metrics(df):
# Filter DataFrame for sessions where intervention happened
intervention_df = df[df[INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
intervention_sessions_held = len(intervention_df)
# Get list of student columns
student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
student_metrics = {}
for col in student_columns:
student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
# Get the attendance data for the student
student_data = intervention_df[[col]].copy()
# Treat blank entries as 'Absent'
student_data[col] = student_data[col].fillna('Absent')
# Assign attendance values
attendance_values = student_data[col].apply(lambda x: 1 if x in [
ENGAGED_STR,
PARTIALLY_ENGAGED_STR,
NOT_ENGAGED_STR
] else 0)
# Number of Sessions Attended
sessions_attended = attendance_values.sum()
# Attendance (%)
attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
attendance_pct = round(attendance_pct, 2)
# For engagement calculation, include only sessions where attendance is not 'Absent'
valid_engagement_indices = attendance_values[attendance_values == 1].index
engagement_data = student_data.loc[valid_engagement_indices, col]
# Assign engagement values
engagement_values = engagement_data.apply(lambda x: 1 if x == ENGAGED_STR
else 0.5 if x == PARTIALLY_ENGAGED_STR else 0)
# Sum of Engagement Values
sum_engagement_values = engagement_values.sum()
# Number of Sessions Attended for engagement (should be same as sessions_attended)
number_sessions_attended = len(valid_engagement_indices)
# Engagement (%)
engagement_pct = (sum_engagement_values / number_sessions_attended) * 100 if number_sessions_attended > 0 else 0
engagement_pct = round(engagement_pct, 2)
# Store metrics
student_metrics[student_name] = {
'Attendance (%)': attendance_pct,
'Engagement (%)': engagement_pct
}
# Create a DataFrame from student_metrics
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
return student_metrics_df
def plot_student_metrics(student_metrics_df):
# Create the figure and axis
fig, ax = plt.subplots()
# Width for the bars and offset for overlapping effect
bar_width = 0.4
index = range(len(student_metrics_df))
# Plot Attendance and Engagement bars side by side with transparency
ax.bar([i - bar_width/2 for i in index], student_metrics_df['Attendance (%)'],
width=bar_width, label='Attendance (%)', color='#005288', alpha=0.7)
ax.bar([i + bar_width/2 for i in index], student_metrics_df['Engagement (%)'],
width=bar_width, label='Engagement (%)', color='#3AB0FF', alpha=0.7)
# Set labels, title, and legend
ax.set_xlabel('Student')
ax.set_ylabel('Percentage (%)')
ax.set_title('Student Attendance and Engagement Metrics')
ax.legend()
ax.set_xticks(index)
ax.set_xticklabels(student_metrics_df['Student'], rotation=45)
# Display the plot
st.pyplot(fig)
return fig
def download_chart(fig, filename):
# Create a buffer to hold the image data
buffer = io.BytesIO()
# Save the figure to the buffer
fig.savefig(buffer, format='png')
# Set the file pointer to the beginning
buffer.seek(0)
# Add a download button to Streamlit
st.download_button(label="Download Chart", data=buffer, file_name=filename, mime='image/png')
def download_llm_output(content, filename):
# Create a buffer to hold the text data
buffer = io.BytesIO()
buffer.write(content.encode('utf-8'))
buffer.seek(0)
# Add a download button to Streamlit
st.download_button(label="Download LLM Output", data=buffer, file_name=filename, mime='text/plain')
def prepare_llm_input(student_metrics_df):
# Convert the student metrics DataFrame to a string
metrics_str = student_metrics_df.to_string(index=False)
llm_input = f"""
Based on the following student metrics:
{metrics_str}
Provide:
1. Notes and Key Takeaways: Summarize the data, highlight students with the lowest and highest attendance and engagement percentages, identify students who may need adjustments to their intervention due to low attendance or engagement, and highlight students who are showing strong performance.
2. Recommendations and Next Steps: Provide interpretations based on the analysis and suggest possible next steps or strategies to improve student outcomes.
"""
return llm_input
def prompt_response_from_hf_llm(llm_input):
# Generate the refined prompt using Hugging Face API
response = client.chat.completions.create(
model="meta-llama/Llama-3.1-70B-Instruct",
messages=[
{"role": "user", "content": llm_input}
],
stream=True,
temperature=0.5,
max_tokens=1024,
top_p=0.7
)
# Combine messages if response is streamed
response_content = ""
for message in response:
response_content += message.choices[0].delta.content
return response_content.strip()
if __name__ == '__main__':
main() |