File size: 19,238 Bytes
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208c4cb
48f9ec0
208c4cb
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
208c4cb
48f9ec0
 
 
208c4cb
 
 
 
48f9ec0
 
 
e157853
48f9ec0
 
208c4cb
48f9ec0
 
 
 
 
 
208c4cb
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6808b16
 
 
 
 
 
 
 
 
 
 
 
0918e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6808b16
 
0918e3b
 
 
 
 
 
48f9ec0
 
 
7437eff
 
48f9ec0
 
 
7437eff
 
 
0918e3b
 
51524e7
7437eff
0a3e3df
48f9ec0
 
51524e7
48f9ec0
7437eff
48f9ec0
0a3e3df
48f9ec0
 
7437eff
48f9ec0
 
7437eff
48f9ec0
 
f6d1135
fcd1755
51524e7
b0c1d78
fcd1755
51524e7
 
fcd1755
51524e7
 
b0c1d78
745f815
b0c1d78
51524e7
48f9ec0
7437eff
48f9ec0
 
7437eff
48f9ec0
 
 
 
7437eff
48f9ec0
 
7437eff
48f9ec0
 
7437eff
48f9ec0
 
7437eff
48f9ec0
 
 
 
 
 
7437eff
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51524e7
48f9ec0
51524e7
48f9ec0
 
51524e7
48f9ec0
 
 
 
 
 
 
 
 
 
fcd1755
 
 
 
48f9ec0
51524e7
fcd1755
 
48f9ec0
51524e7
 
b0c1d78
 
 
48f9ec0
 
 
2ba307e
48f9ec0
 
 
 
 
 
 
 
 
 
 
7437eff
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6808b16
48f9ec0
 
6808b16
 
 
 
 
 
 
 
 
48f9ec0
6808b16
48f9ec0
 
 
 
6808b16
 
48f9ec0
6808b16
48f9ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208c4cb
48f9ec0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# CHARTS + DOWNLOAD + NO NAMES
# intervention_analysis_app.py

#------------------------------------------------------------------------
# Import Modules
#------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import io
import re
# from transformers import pipeline
from huggingface_hub import InferenceClient
import os
from pathlib import Path
from dotenv import load_dotenv

load_dotenv()

#------------------------------------------------------------------------
# Configurations
#------------------------------------------------------------------------
# Streamlit page setup
st.set_page_config(
    page_title="Intervention Program Analysis", 
    page_icon=":bar_chart:", 
    layout="centered", 
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'mailto:[email protected]',
        'About': "This app is built to support spreadsheet analysis"
    }
)

#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------
with st.sidebar:
    # Password input field
    # password = st.text_input("Enter Password:", type="password")
    
    # Set the desired width in pixels
    image_width = 300  
    # Define the path to the image
    image_path = "mimtss.png"
    # Display the image
    st.image(image_path, width=image_width)
    
    # Toggle for Help and Report a Bug
    with st.expander("Need help and report a bug"):
        st.write("""
        **Contact**: Cheyne LeVesseur, PhD  
        **Email**: [email protected]
        """)
    st.divider()
    st.subheader('User Instructions')
    
    # Principles text with Markdown formatting
    User_Instructions = """

    - **Step 1**: Upload your Excel file.
    - **Step 2**: Anonymization – student names are replaced with initials for privacy.
    - **Step 3**: Review anonymized data.
    - **Step 4**: View **intervention session statistics**.
    - **Step 5**: Review **student attendance and engagement metrics**.
    - **Step 6**: Review AI-generated **insights and recommendations**.

    ### **Privacy Assurance**
    - **No full names** are ever displayed or sent to the AI model—only initials are used.
    - This ensures that sensitive data remains protected throughout the entire process.

    ### **Detailed Instructions**

    #### **1. Upload Your Excel File**
    - Start by uploading an Excel file that contains intervention data. 
    - Click on the **“Upload your Excel file”** button and select your `.xlsx` file from your computer.

    **Note**: Your file should have columns like "Did the intervention happen today?" and "Student Attendance [FirstName LastName]" for the analysis to work correctly.

    #### **2. Automated Name Anonymization**
    - Once the file is uploaded, the app will **automatically replace student names with initials** in the "Student Attendance" columns.
      - For example, **"Student Attendance [Cheyne LeVesseur]"** will be displayed as **"Student Attendance [CL]"**.
      - If the student only has a first name, like **"Student Attendance [Cheyne]"**, it will be displayed as **"Student Attendance [C]"**.
    - This anonymization helps to **protect student privacy**, ensuring that full names are not visible or sent to the AI language model.

    #### **3. Review the Uploaded Data**
    - You will see the entire table of anonymized data to verify that the information has been uploaded correctly and that names have been replaced with initials.

    #### **4. Intervention Session Statistics**
    - The app will calculate and display statistics related to intervention sessions, such as:
      - **Total Number of Days Available**
      - **Intervention Sessions Held**
      - **Intervention Sessions Not Held**
      - **Intervention Frequency (%)**
    - A **stacked bar chart** will be shown to visualize the number of sessions held versus not held.
    - If you need to save the visualization, click the **“Download Chart”** button to download it as a `.png` file.

    #### **5. Student Metrics Analysis**
    - The app will also calculate metrics for each student:
      - **Attendance (%)** – The percentage of intervention sessions attended.
      - **Engagement (%)** – The level of engagement during attended sessions.
    - These metrics will be presented in a **line graph** that shows attendance and engagement for each student.
    - You can click the **“Download Chart”** button to download the visualization as a `.png` file.

    #### **6. Generate AI Analysis and Recommendations**
    - The app will prepare data from the student metrics to provide notes, key takeaways, and suggestions for improving outcomes using an **AI language model**.
    - You will see a **spinner** labeled **“Generating AI analysis…”** while the AI processes the data.
      - This step may take a little longer, but the spinner ensures you know that the system is working.
    - Once the analysis is complete, the AI's recommendations will be displayed under **"AI Analysis"**.
    - You can click the **“Download LLM Output”** button to download the AI-generated recommendations as a `.txt` file for future reference.

    """
    st.markdown(User_Instructions)

#------------------------------------------------------------------------
# Functions
#------------------------------------------------------------------------
# Set the Hugging Face API key
# Retrieve Hugging Face API key from environment variables
hf_api_key = os.getenv('HF_API_KEY')
if not hf_api_key:
    raise ValueError("HF_API_KEY not set in environment variables")

# Create the Hugging Face inference client
client = InferenceClient(api_key=hf_api_key)

# Constants
INTERVENTION_COLUMN = 'Did the intervention happen today?'
ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'

def safe_convert_to_time(series, format_str=None):
    try:
        # Attempt to convert to time, ignoring errors
        converted = pd.to_datetime(series, errors='coerce').dt.time
        if format_str:
            # Format if a format string is provided
            return pd.Series([time.strftime(format_str) if time is not None else None for time in converted])
        return converted
    except Exception as e:
        print(f"Error converting series to time: {e}")
        return series

def safe_convert_to_datetime(series, format_str=None):
    try:
        # Attempt to convert to datetime, ignoring errors
        converted = pd.to_datetime(series, errors='coerce')
        if format_str:
            # Format if a format string is provided
            return converted.dt.strftime(format_str)
        return converted
    except Exception as e:
        print(f"Error converting series to datetime: {e}")
        return series

def format_session_data(df):
    # Format "Date of Session" and "Timestamp" columns with safe conversion
    df['Date of Session'] = safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y')
    df['Timestamp'] = safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
    df['Session Start Time'] = safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
    df['Session End Time'] = safe_convert_to_time(df['Session End Time'], '%I:%M %p')

    # Reorder columns
    df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]]

    return df

def main():
    st.title("Intervention Program Analysis")

    # File uploader
    uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])

    if uploaded_file is not None:
        try:
            # Read the Excel file into a DataFrame
            df = pd.read_excel(uploaded_file)

            # Format the session data
            df = format_session_data(df)

            # Replace student names with initials
            df = replace_student_names_with_initials(df)

            st.subheader("Uploaded Data")
            st.write(df)

            # Ensure expected column is available
            if INTERVENTION_COLUMN not in df.columns:
                st.error(f"Expected column '{INTERVENTION_COLUMN}' not found.")
                return

            # Clean up column names
            df.columns = df.columns.str.strip()

            # Compute Intervention Session Statistics
            intervention_stats = compute_intervention_statistics(df)
            st.subheader("Intervention Session Statistics")
            st.write(intervention_stats)

            # Two-column layout for the visualization and intervention frequency
            col1, col2 = st.columns([3, 1])  # Set the column width ratio
            
            with col1:
                intervention_fig = plot_intervention_statistics(intervention_stats)
            
            with col2:
                intervention_frequency = intervention_stats['Intervention Frequency (%)'].values[0]
                # Display the "Intervention Frequency (%)" text
                st.markdown("<h2 style='color: #358E66;'>Intervention Frequency</h2>", unsafe_allow_html=True)
                # Display the frequency value below it
                st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)

            # Add download button for Intervention Session Statistics chart
            download_chart(intervention_fig, "intervention_statistics_chart.png")

            # Compute Student Metrics
            student_metrics_df = compute_student_metrics(df)
            st.subheader("Student Metrics")
            st.write(student_metrics_df)

            # Visualization for Student Metrics
            student_metrics_fig = plot_student_metrics(student_metrics_df)

            # Add download button for Student Metrics chart
            download_chart(student_metrics_fig, "student_metrics_chart.png")

            # Prepare input for the language model
            llm_input = prepare_llm_input(student_metrics_df)

            # Generate Notes and Recommendations using Hugging Face LLM
            with st.spinner("Generating AI analysis..."):
                recommendations = prompt_response_from_hf_llm(llm_input)

            st.subheader("AI Analysis")
            st.markdown(recommendations)

            # Add download button for LLM output
            download_llm_output(recommendations, "llm_output.txt")

        except Exception as e:
            st.error(f"Error reading the file: {str(e)}")

def replace_student_names_with_initials(df):
    """Replace student names in column headers with initials."""
    updated_columns = []
    for col in df.columns:
        if col.startswith('Student Attendance'):
            # Extract the name from the column header
            match = re.match(r'Student Attendance \[(.+?)\]', col)
            if match:
                name = match.group(1)
                # Split the name into parts (first and last name)
                name_parts = name.split()
                # Convert the name to initials
                if len(name_parts) == 1:
                    initials = name_parts[0][0]  # Just take the first letter
                else:
                    initials = ''.join([part[0] for part in name_parts])  # Take the first letter of each part
                # Update the column name
                updated_columns.append(f'Student Attendance [{initials}]')
            else:
                updated_columns.append(col)
        else:
            updated_columns.append(col)
    df.columns = updated_columns
    return df

def compute_intervention_statistics(df):
    # Total Number of Days Available
    total_days = len(df)

    # Intervention Sessions Held
    sessions_held = df[INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()

    # Intervention Sessions Not Held
    sessions_not_held = df[INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum()

    # Intervention Frequency (%)
    intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
    intervention_frequency = round(intervention_frequency, 2)

    # Reorder columns as specified
    stats = {
        'Intervention Frequency (%)': [intervention_frequency],
        'Intervention Sessions Held': [sessions_held],
        'Intervention Sessions Not Held': [sessions_not_held],
        'Total Number of Days Available': [total_days]
    }
    stats_df = pd.DataFrame(stats)
    return stats_df

def plot_intervention_statistics(intervention_stats):
    # Create a stacked bar chart for sessions held and not held
    sessions_held = intervention_stats['Intervention Sessions Held'].values[0]
    sessions_not_held = intervention_stats['Intervention Sessions Not Held'].values[0]

    fig, ax = plt.subplots()
    # Plot "Held" on the bottom
    ax.bar(['Intervention Sessions'], [sessions_held], label='Held', color='#358E66')
    # Plot "Not Held" on top of "Held"
    ax.bar(['Intervention Sessions'], [sessions_not_held], bottom=[sessions_held], label='Not Held', color='#91D6B8')

    # Display values on the bars
    ax.text(0, sessions_held / 2, str(sessions_held), ha='center', va='center', color='white')
    ax.text(0, sessions_held + sessions_not_held / 2, str(sessions_not_held), ha='center', va='center', color='black')

    # Update chart settings
    ax.set_ylabel('Frequency')
    # Reverse the legend order to match the new stacking order
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(handles[::-1], labels[::-1])
    st.pyplot(fig)

    return fig

def compute_student_metrics(df):
    # Filter DataFrame for sessions where intervention happened
    intervention_df = df[df[INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
    intervention_sessions_held = len(intervention_df)

    # Get list of student columns
    student_columns = [col for col in df.columns if col.startswith('Student Attendance')]

    student_metrics = {}

    for col in student_columns:
        student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
        # Get the attendance data for the student
        student_data = intervention_df[[col]].copy()

        # Treat blank entries as 'Absent'
        student_data[col] = student_data[col].fillna('Absent')

        # Assign attendance values
        attendance_values = student_data[col].apply(lambda x: 1 if x in [
            ENGAGED_STR,
            PARTIALLY_ENGAGED_STR,
            NOT_ENGAGED_STR
        ] else 0)

        # Number of Sessions Attended
        sessions_attended = attendance_values.sum()

        # Attendance (%)
        attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
        attendance_pct = round(attendance_pct, 2)

        # For engagement calculation, include only sessions where attendance is not 'Absent'
        valid_engagement_indices = attendance_values[attendance_values == 1].index
        engagement_data = student_data.loc[valid_engagement_indices, col]

        # Assign engagement values
        engagement_values = engagement_data.apply(lambda x: 1 if x == ENGAGED_STR
                                                  else 0.5 if x == PARTIALLY_ENGAGED_STR else 0)

        # Sum of Engagement Values
        sum_engagement_values = engagement_values.sum()

        # Number of Sessions Attended for engagement (should be same as sessions_attended)
        number_sessions_attended = len(valid_engagement_indices)

        # Engagement (%)
        engagement_pct = (sum_engagement_values / number_sessions_attended) * 100 if number_sessions_attended > 0 else 0
        engagement_pct = round(engagement_pct, 2)

        # Store metrics
        student_metrics[student_name] = {
            'Attendance (%)': attendance_pct,
            'Engagement (%)': engagement_pct
        }

    # Create a DataFrame from student_metrics
    student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
    student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
    return student_metrics_df

def plot_student_metrics(student_metrics_df):
    # Create the figure and axis
    fig, ax = plt.subplots()

    # Width for the bars and offset for overlapping effect
    bar_width = 0.4
    index = range(len(student_metrics_df))

    # Plot Attendance and Engagement bars side by side with transparency
    ax.bar([i - bar_width/2 for i in index], student_metrics_df['Attendance (%)'], 
           width=bar_width, label='Attendance (%)', color='#005288', alpha=0.7)
    ax.bar([i + bar_width/2 for i in index], student_metrics_df['Engagement (%)'], 
           width=bar_width, label='Engagement (%)', color='#3AB0FF', alpha=0.7)

    # Set labels, title, and legend
    ax.set_xlabel('Student')
    ax.set_ylabel('Percentage (%)')
    ax.set_title('Student Attendance and Engagement Metrics')
    ax.legend()
    ax.set_xticks(index)
    ax.set_xticklabels(student_metrics_df['Student'], rotation=45)

    # Display the plot
    st.pyplot(fig)

    return fig

def download_chart(fig, filename):
    # Create a buffer to hold the image data
    buffer = io.BytesIO()
    # Save the figure to the buffer
    fig.savefig(buffer, format='png')
    # Set the file pointer to the beginning
    buffer.seek(0)
    # Add a download button to Streamlit
    st.download_button(label="Download Chart", data=buffer, file_name=filename, mime='image/png')

def download_llm_output(content, filename):
    # Create a buffer to hold the text data
    buffer = io.BytesIO()
    buffer.write(content.encode('utf-8'))
    buffer.seek(0)
    # Add a download button to Streamlit
    st.download_button(label="Download LLM Output", data=buffer, file_name=filename, mime='text/plain')

def prepare_llm_input(student_metrics_df):
    # Convert the student metrics DataFrame to a string
    metrics_str = student_metrics_df.to_string(index=False)
    llm_input = f"""
Based on the following student metrics:

{metrics_str}

Provide:

1. Notes and Key Takeaways: Summarize the data, highlight students with the lowest and highest attendance and engagement percentages, identify students who may need adjustments to their intervention due to low attendance or engagement, and highlight students who are showing strong performance. 

2. Recommendations and Next Steps: Provide interpretations based on the analysis and suggest possible next steps or strategies to improve student outcomes.
"""
    return llm_input

def prompt_response_from_hf_llm(llm_input):
    # Generate the refined prompt using Hugging Face API
    response = client.chat.completions.create(
        model="meta-llama/Llama-3.1-70B-Instruct",
        messages=[
            {"role": "user", "content": llm_input}
        ],
        stream=True,
        temperature=0.5,
        max_tokens=1024,
        top_p=0.7
    )
    
    # Combine messages if response is streamed
    response_content = ""
    for message in response:
        response_content += message.choices[0].delta.content

    return response_content.strip()

if __name__ == '__main__':
    main()