Spaces:
Runtime error
Runtime error
import os, xml.etree.ElementTree as ET, torch, torch.nn as nn, torch.nn.functional as F, numpy as np | |
from typing import List, Dict, Any, Optional | |
from collections import defaultdict | |
from accelerate import Accelerator | |
from transformers import AutoTokenizer, AutoModel | |
from termcolor import colored | |
from sklearn.metrics.pairwise import cosine_similarity | |
class DM(nn.Module): | |
def __init__(self, s: Dict[str, List[Dict[str, Any]]]): | |
super(DM, self).__init__() | |
self.s = nn.ModuleDict() | |
if not s: s = {'default': [{'input_size': 128, 'output_size': 256, 'activation': 'relu', 'batch_norm': True, 'dropout': 0.1}]} | |
for sn, l in s.items(): | |
self.s[sn] = nn.ModuleList() | |
for lp in l: | |
print(colored(f"Creating layer in section '{sn}' with params: {lp}", 'cyan')) | |
self.s[sn].append(self.cl(lp)) | |
def cl(self, lp: Dict[str, Any]) -> nn.Module: | |
l = [nn.Linear(lp['input_size'], lp['output_size'])] | |
if lp.get('batch_norm', True): l.append(nn.BatchNorm1d(lp['output_size'])) | |
a = lp.get('activation', 'relu') | |
if a == 'relu': l.append(nn.ReLU(inplace=True)) | |
elif a == 'tanh': l.append(nn.Tanh()) | |
elif a == 'sigmoid': l.append(nn.Sigmoid()) | |
elif a == 'leaky_relu': l.append(nn.LeakyReLU(negative_slope=0.01, inplace=True)) | |
elif a == 'elu': l.append(nn.ELU(alpha=1.0, inplace=True)) | |
elif a is not None: raise ValueError(f"Unsupported activation function: {a}") | |
if dr := lp.get('dropout', 0.0): l.append(nn.Dropout(p=dr)) | |
if hl := lp.get('hidden_layers', []): | |
for hlp in hl: l.append(self.cl(hlp)) | |
if lp.get('memory_augmentation', True): l.append(MAL(lp['output_size'])) | |
if lp.get('hybrid_attention', True): l.append(HAL(lp['output_size'])) | |
if lp.get('dynamic_flash_attention', True): l.append(DFAL(lp['output_size'])) | |
return nn.Sequential(*l) | |
def forward(self, x: torch.Tensor, sn: Optional[str] = None) -> torch.Tensor: | |
if sn is not None: | |
if sn not in self.s: raise KeyError(f"Section '{sn}' not found in model") | |
for l in self.s[sn]: x = l(x) | |
else: | |
for sn, l in self.s.items(): | |
for l in l: x = l(x) | |
return x | |
class MAL(nn.Module): | |
def __init__(self, s: int): | |
super(MAL, self).__init__() | |
self.m = nn.Parameter(torch.randn(s)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x + self.m | |
class HAL(nn.Module): | |
def __init__(self, s: int): | |
super(HAL, self).__init__() | |
self.a = nn.MultiheadAttention(s, num_heads=8) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = x.unsqueeze(1) | |
ao, _ = self.a(x, x, x) | |
return ao.squeeze(1) | |
class DFAL(nn.Module): | |
def __init__(self, s: int): | |
super(DFAL, self).__init__() | |
self.a = nn.MultiheadAttention(s, num_heads=8) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = x.unsqueeze(1) | |
ao, _ = self.a(x, x, x) | |
return ao.squeeze(1) | |
def px(file_path: str) -> List[Dict[str, Any]]: | |
t = ET.parse(file_path) | |
r = t.getroot() | |
l = [] | |
for ly in r.findall('.//layer'): | |
lp = {'input_size': int(ly.get('input_size', 128)), 'output_size': int(ly.get('output_size', 256)), 'activation': ly.get('activation', 'relu').lower()} | |
if lp['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']: raise ValueError(f"Unsupported activation function: {lp['activation']}") | |
if lp['input_size'] <= 0 or lp['output_size'] <= 0: raise ValueError("Layer dimensions must be positive integers") | |
l.append(lp) | |
if not l: l.append({'input_size': 128, 'output_size': 256, 'activation': 'relu'}) | |
return l | |
def cmf(folder_path: str) -> DM: | |
s = defaultdict(list) | |
if not os.path.exists(folder_path): | |
print(colored(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.", 'yellow')) | |
return DM({}) | |
xf = True | |
for r, d, f in os.walk(folder_path): | |
for file in f: | |
if file.endswith('.xml'): | |
xf = True | |
fp = os.path.join(r, file) | |
try: | |
l = px(fp) | |
sn = os.path.basename(r).replace('.', '_') | |
s[sn].extend(l) | |
except Exception as e: | |
print(colored(f"Error processing {fp}: {str(e)}", 'red')) | |
if not xf: | |
print(colored("Warning: No XML files found. Creating model with default configuration.", 'yellow')) | |
return DM({}) | |
return DM(dict(s)) | |
def ceas(folder_path: str, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"): | |
t = AutoTokenizer.from_pretrained(model_name) | |
m = AutoModel.from_pretrained(model_name) | |
embeddings = [] | |
ds = [] | |
for r, d, f in os.walk(folder_path): | |
for file in f: | |
if file.endswith('.xml'): | |
fp = os.path.join(r, file) | |
try: | |
tree = ET.parse(fp) | |
root = tree.getroot() | |
for e in root.iter(): | |
if e.text: | |
text = e.text.strip() | |
i = t(text, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
emb = m(**i).last_hidden_state.mean(dim=1).numpy() | |
embeddings.append(emb) | |
ds.append(text) | |
except Exception as e: | |
print(colored(f"Error processing {fp}: {str(e)}", 'red')) | |
embeddings = np.vstack(embeddings) | |
return embeddings, ds | |
def qvs(query: str, embeddings, ds, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"): | |
t = AutoTokenizer.from_pretrained(model_name) | |
m = AutoModel.from_pretrained(model_name) | |
i = t(query, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
qe = m(**i).last_hidden_state.mean(dim=1).numpy() | |
similarities = cosine_similarity(qe, embeddings) | |
top_k_indices = similarities[0].argsort()[-5:][::-1] | |
return [ds[i] for i in top_k_indices] | |
def main(): | |
fp = 'data' | |
m = cmf(fp) | |
print(colored(f"Created dynamic PyTorch model with sections: {list(m.s.keys())}", 'green')) | |
fs = next(iter(m.s.keys())) | |
fl = m.s[fs][0] | |
ife = fl[0].in_features | |
si = torch.randn(1, ife) | |
o = m(si) | |
print(colored(f"Sample output shape: {o.shape}", 'green')) | |
embeddings, ds = ceas(fp) | |
a = Accelerator() | |
o = torch.optim.Adam(m.parameters(), lr=0.001) | |
c = nn.CrossEntropyLoss() | |
ne = 10 | |
d = torch.utils.data.TensorDataset(torch.randn(100, ife), torch.randint(0, 2, (100,))) | |
td = torch.utils.data.DataLoader(d, batch_size=16, shuffle=True) | |
m, o, td = a.prepare(m, o, td) | |
for e in range(ne): | |
m.train() | |
tl = 0 | |
for bi, (i, l) in enumerate(td): | |
o.zero_grad() | |
o = m(i) | |
l = c(o, l) | |
a.backward(l) | |
o.step() | |
tl += l.item() | |
al = tl / len(td) | |
print(colored(f"Epoch {e+1}/{ne}, Average Loss: {al:.4f}", 'blue')) | |
uq = "example query text" | |
r = qvs(uq, embeddings, ds) | |
print(colored(f"Query results: {r}", 'magenta')) | |
if __name__ == "__main__": | |
main() |