File size: 11,378 Bytes
a67dc80 3c3e3e7 a67dc80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os,time,re,glob,pickle,itertools,json,hashlib,asyncio,threading,concurrent.futures,warnings,logging
from pathlib import Path;from collections import defaultdict,Counter;from concurrent.futures import *
from typing import *;import numpy as np,torch,torch.nn as nn,torch.nn.functional as F,torch.optim as optim
from torch.utils.data import *;from torch_geometric.nn import *;from torch.distributions import Categorical
import nltk,networkx as nx,scipy.sparse as sp;from tqdm import tqdm;from queue import Queue
from nltk.tokenize import *;from nltk.stem import *;from nltk.corpus import *;from nltk.tag import *
from nltk.chunk import *;warnings.filterwarnings('ignore');P=print
print("Starting module initialization...")
class Cfg:
E,H,N,C,B=512,32,1024,256,128;M,S,V=20000,2048,1e5;W,L,D=4000,2e-4,.15
@classmethod
def d(cls):
print(f"Retrieving configuration dictionary with {len([k for k,v in cls.__dict__.items() if not k.startswith('_')])} items")
return{k:v for k,v in cls.__dict__.items()if not k.startswith('_')}
class Log:
def __init__(s,f='r.log'):
print(f"Initializing logger with file: {f}")
s.l=logging.getLogger('R');s.l.setLevel(logging.INFO)
for h in[logging.FileHandler(f),logging.StreamHandler()]:
h.setFormatter(logging.Formatter('%(asctime)s-%(name)s-%(levelname)s-%(message)s'))
s.l.addHandler(h)
def i(s,m):
print(f"INFO: {m}")
s.l.info(m)
def e(s,m):
print(f"ERROR: {m}")
s.l.error(m)
def s(s,m):
print(f"SUCCESS: {m}")
s.l.info(f"\033[92m{m}\033[0m")
class Res:
R={'t':{'p','a'},'g':{'u','a'},'c':{'s','w','b','t'}}
def __init__(s):
print("Initializing Resource Manager...")
s.l=Log();s.c={};s._i()
P('Resource manager initialized')
def _i(s):
print("Initializing NLP components...")
s.d={'l':WordNetLemmatizer(),'s':PorterStemmer(),'t':ToktokTokenizer(),
'p':s._p(),'r':RegexpParser(s.G)}
P('Components initialized')
def _p(s):
print("Processing tagged sentences...")
raw_sents = nltk.corpus.brown.tagged_sents()[:10000]
t = []
for sent in raw_sents:
if sent:
t.extend((word, tag) for word, tag in sent if word and tag)
return TrigramTagger(train=[t], backoff=BigramTagger([t], backoff=UnigramTagger([t])))
def p(s,t):
print(f"Processing text input of length: {len(t)}")
k=s.d['t'].tokenize(t)
f={'t':k,'p':s.d['p'].tag(k),'l':[s.d['l'].lemmatize(x)for x in k],
's':[s.d['s'].stem(x)for x in k]}
with ThreadPoolExecutor(2)as e:
f['r']=e.submit(s.d['r'].parse,f['p']).result()
P(f'Processed text: {len(k)} tokens')
return f
G = """
NP: {<DT|PP\$>?<JJ>*<NN.*>+}
VP: {<VB.*><NP|PP|CLAUSE>+}
CLAUSE: {<NP><VP>}
"""
def _i(s):
s.d = {
'l': WordNetLemmatizer(),
's': PorterStemmer(),
't': ToktokTokenizer(),
'p': s._p(),
'r': RegexpParser(s.G.strip()) # Clean whitespace
}
P('Components initialized with enhanced grammar')
class TB(nn.Module):
def __init__(s,d,h,r=4,p=Cfg.D):
super().__init__()
s.a=nn.MultiheadAttention(d,h,p);s.m=nn.Sequential(nn.Linear(d,int(d*r)),nn.GELU(),
nn.Dropout(p),nn.Linear(int(d*r),d),nn.Dropout(p));s.n=nn.ModuleList([nn.LayerNorm(d)for _ in'123'])
s.g=GATConv(d,d,4,p);s.f=nn.Sequential(nn.Linear(d,d),nn.Sigmoid())
P(f'Transformer block initialized: dim={d}, heads={h}')
def forward(s,x,e=None,m=None):
x=x+s.a(s.n[0](x),m)[0];x=x+s.m(s.n[1](x))
if e is not None:x=x+s.g(s.n[2](x).view(-1,x.size(-1)),e).view(x.size())
return x*s.f(x)
class MA(nn.Module):
def __init__(s,nc=Cfg.C,vs=Cfg.V,ed=Cfg.E,d=12,h=Cfg.H):
super().__init__()
s.e=nn.Embedding(vs,ed);s.p=nn.Parameter(torch.zeros(1,Cfg.S,ed))
s.t=nn.ModuleList([TB(ed,h)for _ in range(d)]);s.m=nn.Parameter(torch.zeros(1,Cfg.N,ed))
s.o=nn.Sequential(nn.Linear(ed,ed),nn.Tanh());s.c=nn.Sequential(nn.Linear(ed,ed//2),
nn.ReLU(),nn.Dropout(Cfg.D),nn.Linear(ed//2,nc));s._i()
P(f'Model architecture initialized: classes={nc}, vocab={vs}, dim={ed}')
def _i(s):
def i(l):
if isinstance(l,nn.Linear):nn.init.xavier_uniform_(l.weight)
if getattr(l,'bias',None)is not None:nn.init.zeros_(l.bias)
s.apply(i)
def forward(s,x,e=None):
B,N=x.shape;x=s.e(x)+s.p[:,:N]
for b in s.t:x=b(x,e,s.m)
return s.c(s.o(x.mean(1)))
class Opt:
def __init__(s,p,l=Cfg.L,w=Cfg.W,d=.01):
s.o=optim.AdamW(p,l,(.9,.999),1e-8,d)
s.s=optim.lr_scheduler.OneCycleLR(s.o,l,w,.1,'cos',True,25,1e4)
s.c=torch.cuda.amp.GradScaler();s.g=1.0
P('Optimizer initialized with AdamW and OneCycleLR')
def step(s,l):
s.c.scale(l).backward();s.c.unscale_(s.o)
torch.nn.utils.clip_grad_norm_(s.o.param_groups[0]['params'],s.g)
s.c.step(s.o);s.c.update();s.s.step();s.o.zero_grad()
class T:
def __init__(s,m,t,v,d):
s.m=m.to(d);s.t=t;s.v=v;s.d=d;s.o=Opt(m.parameters())
s.mt=defaultdict(list);s.c=nn.CrossEntropyLoss(label_smoothing=.1)
s.l=Log();s.b=-float('inf');s._m={}
P('Trainer initialized with device: '+str(d))
def e(s):
s.m.train();m=defaultdict(float)
for i,(x,y)in enumerate(tqdm(s.t,desc='Training')):
x,y=x.to(s.d),y.to(s.d)
with torch.cuda.amp.autocast():o=s.m(x);l=s.c(o,y)
s.o.step(l);b=s._c(o,y,l)
for k,v in b.items():m[k]+=v
if i%10==0:P(f'Batch {i}: Loss={l.item():.4f}')
return {k:v/len(s.t)for k,v in m.items()}
def v(s):
s.m.eval();m=defaultdict(float)
with torch.no_grad():
for x,y in tqdm(s.v,desc='Validating'):
x,y=x.to(s.d),y.to(s.d);o=s.m(x)
for k,v in s._c(o,y).items():m[k]+=v
r={k:v/len(s.v)for k,v in m.items()};s._u(r)
P(f'Validation metrics: {r}')
return r
def _c(s,o,t,l=None):
m={};m['l']=l.item()if l else 0
p=o.argmax(1);c=p.eq(t).sum().item();m['a']=c/t.size(0)
with torch.no_grad():
pb=F.softmax(o,1);cf=pb.max(1)[0].mean().item()
et=-torch.sum(pb*torch.log(pb+1e-10),1).mean().item()
m.update({'c':cf,'e':et})
return m
def t(s,e,p=None,es=5):
b=-float('inf');pc=0
for i in range(e):
tm=s.e();vm=s.v()
s.l.i(f'E{i+1}/{e}-TL:{tm["l"]:.4f},VL:{vm["l"]:.4f},VA:{vm["a"]:.4f}')
if vm['a']>b:
b=vm['a'];pc=0
else:
pc+=1
if p:
s._s(p,i,vm)
if pc>=es:
s.l.i(f'Early stop after {i+1} epochs');break
P(f'Epoch {i+1} completed')
def _s(s,p,e,m):
torch.save({'e':e,'m':s.m.state_dict(),'o':s.o.o.state_dict(),
's':s.o.s.state_dict(),'m':m,'c':Cfg.d(),'t':time.strftime('%Y%m%d-%H%M%S')},p)
s.l.s(f'Checkpoint saved: {p}')
class D:
def __init__(s,p,b=Cfg.B,w=os.cpu_count()):
s.p=Path(p);s.b=b;s.w=w;s.pr=Res();s.l=Log()
s.t=s.v=s.e=None;P('DataModule initialized')
def s(s):
d=s._l();t,v,e=s._sp(d)
s.t,s.v,s.e=map(s._c,[t,v,e])
P(f'Datasets created: {len(s.t)}/{len(s.v)}/{len(s.e)} samples')
def _l(s):
d=[];f=list(s.p.rglob('*.xml'))
with ProcessPoolExecutor(s.w)as e:
fs=[e.submit(s._pf,f)for f in f]
for f in tqdm(as_completed(fs),total=len(f)):
if r:=f.result():d.append(r)
P(f'Loaded {len(d)} files')
return d
def _pf(s,f):
try:
t=ET.parse(f);r=t.getroot()
tx=' '.join(e.text for e in r.findall('.//text')if e.text)
p=s.pr.p(tx);l=r.find('.//label')
return{'f':p,'m':{'l':len(tx)},'l':l.text if l is not None else'UNK','p':str(f)}
except Exception as e:s.l.e(f'Error:{f}-{str(e)}');return None
def _sp(s,d):
np.random.seed(42);i=np.random.permutation(len(d))
t,v=int(.8*len(d)),int(.9*len(d))
return [d[j]for j in i[:t]],[d[j]for j in i[t:v]],[d[j]for j in i[v:]]
def _c(s,d):
f=torch.stack([torch.tensor(i['f'])for i in d])
l={x:i for i,x in enumerate(sorted(set(i['l']for i in d)))}
y=torch.tensor([l[i['l']]for i in d])
return TensorDataset(f,y)
def dl(s,t):
d=getattr(s,t);sh=t=='t'
return DataLoader(d,s.b,sh,s.w,True,t=='t')
class P:
def __init__(s, cfg_dict):
# Convert any string config to dict if needed
s.c = cfg_dict if isinstance(cfg_dict, dict) else {'p': cfg_dict, 'o': 'r_out'}
s.l = Log()
s.o = Path(s.c['o'] if 'o' in s.c else 'r_out')
s.o.mkdir(parents=True, exist_ok=True)
s.d = D(s.c['p'], s.c.get('b', Cfg.B))
s.v = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
P('Pipeline initialized with configuration')
def r(s):
s.l.i('Init pipeline');s.d.s()
m=s._im();t=T(m,s.d.dl('t'),s.d.dl('v'),s.v)
t.t(s.c.get('e',50),s.o/'ckpt'/'best.pth')
s._f(m,t);P('Pipeline completed')
def _im(s):
s.l.i('Init model')
return MA(len(s.d.t.tensors[1].unique()),Cfg.V,Cfg.E,s.c.get('md',12),Cfg.H).to(s.v)
def _f(s,m,t):
s.l.i('Finalizing');r=s._em(m,s.d.dl('e'))
s._ex(m,t,r);P('Results exported')
def _em(s,m,d):
m.eval();p,t=[],[];mt=defaultdict(list)
with torch.no_grad():
for x,y in tqdm(d,'Evaluating'):
x,y=x.to(s.v),y.to(s.v);o=m(x)
p.extend(o.argmax(1).cpu());t.extend(y.cpu())
for k,v in s._cm(o,y).items():mt[k].append(v)
return{'p':p,'t':t,'m':mt}
class M:
def __init__(s):s.h=defaultdict(list);s.c=defaultdict(float);P('Metrics initialized')
def u(s,m):
for k,v in m.items():s.h[k].append(v);s.c[k]=v
if len(s.h['l'])%10==0:P(f'Metrics updated: {dict(s.c)}')
def g(s):return{'h':dict(s.h),'c':dict(s.c)}
def _ce(c,a,n=15):
b=np.linspace(0,1,n+1);l,u=b[:-1],b[1:]
e=sum(abs(np.mean(c[np.logical_and(c>l,c<=h)])-np.mean(a[np.logical_and(c>l,c<=h)]))*
np.mean(np.logical_and(c>l,c<=h))for l,h in zip(l,u))
return float(e)
def _pd(p):return float(-torch.sum(p.mean(0)*torch.log(p.mean(0)+1e-10)))
def _exp(p,d,m,c):
p.mkdir(parents=True,exist_ok=True)
torch.save({'m':m.state_dict(),'c':c},p/'model.pt')
with open(p/'metrics.json','w')as f:json.dump(m,f)
P(f'Exported to {p}')
def main():
# Enhanced configuration handling
cfg = {
'p': 'data',
'o': 'output',
'm': Cfg.d(),
'b': Cfg.B,
'md': 12,
'e': 50
}
P("Starting pipeline with configuration...")
pipeline = P(cfg)
pipeline.r()
P("Pipeline completed successfully!")
if __name__=='__main__':
print("Starting main execution...")
main()
print("Main execution completed.") |