Spaces:
Runtime error
Runtime error
Update app/main.py
Browse files- app/main.py +82 -82
app/main.py
CHANGED
@@ -1,82 +1,82 @@
|
|
1 |
-
from twilio.rest import Client
|
2 |
-
import yaml
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
|
6 |
-
import yaml
|
7 |
-
import json
|
8 |
-
from langchain.embeddings import OpenAIEmbeddings
|
9 |
-
from langchain_community.vectorstores import Chroma
|
10 |
-
from helper import retrieve_relevant_context, generate_response_with_context
|
11 |
-
|
12 |
-
# Load relevant API Keys
|
13 |
-
file_path = '
|
14 |
-
|
15 |
-
with open(file_path, 'r') as file:
|
16 |
-
api_keys = yaml.safe_load(file)
|
17 |
-
|
18 |
-
|
19 |
-
# Extract openai username and key
|
20 |
-
openai_key = api_keys['OPEN_AI']['Key']
|
21 |
-
|
22 |
-
os.environ["OPENAI_API_KEY"] = openai_key
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# Extract openai username and key
|
27 |
-
account_sid = api_keys['TWILIO']['account_sid']
|
28 |
-
auth_token = api_keys['TWILIO']['auth_token']
|
29 |
-
|
30 |
-
account_sid = account_sid
|
31 |
-
auth_token = auth_token
|
32 |
-
|
33 |
-
# Define the persist directory
|
34 |
-
persist_directory = '
|
35 |
-
|
36 |
-
# Initialize the embeddings model
|
37 |
-
embedding_model = OpenAIEmbeddings()
|
38 |
-
|
39 |
-
### Vectorstores
|
40 |
-
from langchain_community.vectorstores import Chroma
|
41 |
-
|
42 |
-
# Load the Chroma vector store
|
43 |
-
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_model)
|
44 |
-
|
45 |
-
|
46 |
-
#setup Twilio client
|
47 |
-
client = Client(account_sid, auth_token)
|
48 |
-
|
49 |
-
|
50 |
-
from flask import Flask, request, redirect
|
51 |
-
from twilio.twiml.messaging_response import MessagingResponse
|
52 |
-
print("flask app is running")
|
53 |
-
app = Flask(__name__)
|
54 |
-
|
55 |
-
@app.route("/whatsapp", methods=['GET', 'POST'])
|
56 |
-
def incoming_sms():
|
57 |
-
"""Send a dynamic reply to an incoming text message"""
|
58 |
-
# Get the message the user sent our Twilio number
|
59 |
-
body = request.values.get('Body', None)
|
60 |
-
print("body :",body)
|
61 |
-
|
62 |
-
##### Process incoming text #############
|
63 |
-
incoming_msg = body.strip()
|
64 |
-
if not incoming_msg:
|
65 |
-
return str(MessagingResponse())
|
66 |
-
|
67 |
-
# Generate response using the RAG-powered system
|
68 |
-
retrieved_texts = retrieve_relevant_context(vectordb, incoming_msg)
|
69 |
-
context = "\n".join(retrieved_texts)
|
70 |
-
response = generate_response_with_context(incoming_msg, context)
|
71 |
-
print("response :",response)
|
72 |
-
##### Process incoming text Done #############
|
73 |
-
|
74 |
-
|
75 |
-
# Start our TwiML response
|
76 |
-
resp = MessagingResponse()
|
77 |
-
print("TwiML resp :", resp)
|
78 |
-
resp.message(response)
|
79 |
-
return str(resp)
|
80 |
-
|
81 |
-
if __name__ == "__main__":
|
82 |
-
app.run(port=5000, debug=True)
|
|
|
1 |
+
from twilio.rest import Client
|
2 |
+
import yaml
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
import yaml
|
7 |
+
import json
|
8 |
+
from langchain.embeddings import OpenAIEmbeddings
|
9 |
+
from langchain_community.vectorstores import Chroma
|
10 |
+
from helper import retrieve_relevant_context, generate_response_with_context
|
11 |
+
|
12 |
+
# Load relevant API Keys
|
13 |
+
file_path = '../Config/API_KEYS.yml'
|
14 |
+
|
15 |
+
with open(file_path, 'r') as file:
|
16 |
+
api_keys = yaml.safe_load(file)
|
17 |
+
|
18 |
+
|
19 |
+
# Extract openai username and key
|
20 |
+
openai_key = api_keys['OPEN_AI']['Key']
|
21 |
+
|
22 |
+
os.environ["OPENAI_API_KEY"] = openai_key
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
# Extract openai username and key
|
27 |
+
account_sid = api_keys['TWILIO']['account_sid']
|
28 |
+
auth_token = api_keys['TWILIO']['auth_token']
|
29 |
+
|
30 |
+
account_sid = account_sid
|
31 |
+
auth_token = auth_token
|
32 |
+
|
33 |
+
# Define the persist directory
|
34 |
+
persist_directory = '../vector_db/chroma_v01'
|
35 |
+
|
36 |
+
# Initialize the embeddings model
|
37 |
+
embedding_model = OpenAIEmbeddings()
|
38 |
+
|
39 |
+
### Vectorstores
|
40 |
+
from langchain_community.vectorstores import Chroma
|
41 |
+
|
42 |
+
# Load the Chroma vector store
|
43 |
+
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_model)
|
44 |
+
|
45 |
+
|
46 |
+
#setup Twilio client
|
47 |
+
client = Client(account_sid, auth_token)
|
48 |
+
|
49 |
+
|
50 |
+
from flask import Flask, request, redirect
|
51 |
+
from twilio.twiml.messaging_response import MessagingResponse
|
52 |
+
print("flask app is running")
|
53 |
+
app = Flask(__name__)
|
54 |
+
|
55 |
+
@app.route("/whatsapp", methods=['GET', 'POST'])
|
56 |
+
def incoming_sms():
|
57 |
+
"""Send a dynamic reply to an incoming text message"""
|
58 |
+
# Get the message the user sent our Twilio number
|
59 |
+
body = request.values.get('Body', None)
|
60 |
+
print("body :",body)
|
61 |
+
|
62 |
+
##### Process incoming text #############
|
63 |
+
incoming_msg = body.strip()
|
64 |
+
if not incoming_msg:
|
65 |
+
return str(MessagingResponse())
|
66 |
+
|
67 |
+
# Generate response using the RAG-powered system
|
68 |
+
retrieved_texts = retrieve_relevant_context(vectordb, incoming_msg)
|
69 |
+
context = "\n".join(retrieved_texts)
|
70 |
+
response = generate_response_with_context(incoming_msg, context)
|
71 |
+
print("response :",response)
|
72 |
+
##### Process incoming text Done #############
|
73 |
+
|
74 |
+
|
75 |
+
# Start our TwiML response
|
76 |
+
resp = MessagingResponse()
|
77 |
+
print("TwiML resp :", resp)
|
78 |
+
resp.message(response)
|
79 |
+
return str(resp)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
app.run(port=5000, debug=True)
|