Spaces:
Sleeping
Sleeping
from PyPDF2 import PdfReader | |
import requests | |
import json | |
import os | |
import concurrent.futures | |
import random | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_community.document_loaders import WebBaseLoader | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import google.generativeai as genai | |
from langchain_core.messages import HumanMessage | |
from io import BytesIO | |
import numpy as np | |
import re | |
import torch | |
from transformers import AutoTokenizer, AutoModel | |
from search import search_images | |
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1) | |
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1) | |
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1) | |
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1) | |
vision = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1) | |
vision1 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1) | |
vision2 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1) | |
vision3 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1) | |
tokenizer = AutoTokenizer.from_pretrained('dwzhu/e5-base-4k',trust_remote_code = True) | |
model = AutoModel.from_pretrained('dwzhu/e5-base-4k',trust_remote_code = True) | |
model.to('cpu') # Ensure the model is on the CPU | |
genai.configure(api_key="AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI") | |
def pdf_extractor(link): | |
text = '' | |
try: | |
# Fetch the PDF file from the URL | |
response = requests.get(link) | |
response.raise_for_status() # Raise an error for bad status codes | |
# Use BytesIO to handle the PDF content in memory | |
pdf_file = BytesIO(response.content) | |
# Load the PDF file | |
reader = PdfReader(pdf_file) | |
for page in reader.pages: | |
text += page.extract_text() # Extract text from each page | |
except requests.exceptions.HTTPError as e: | |
print(f'HTTP error occurred: {e}') | |
except Exception as e: | |
print(f'An error occurred: {e}') | |
return text | |
def web_extractor(link): | |
text = '' | |
try: | |
loader = WebBaseLoader(link) | |
pages = loader.load_and_split() | |
for page in pages: | |
text+=page.page_content | |
except: | |
pass | |
return text | |
def imporve_text(text): | |
prompt = f''' | |
Please rewrite the following text to make it short, concise, and of high quality. | |
Ensure that all essential information and key points are retained. | |
Focus on improving clarity, coherence, and word choice without altering the original meaning. | |
text = {text} | |
''' | |
model = random.choice([gemini,gemini1,gemini2,gemini3]) | |
result = model.invoke(prompt) | |
return result.content | |
def feature_extraction(tag, history , context): | |
prompt = f''' | |
You are an intelligent assistant tasked with updating product information. You have two data sources: | |
1. Tag_History: Previously gathered information about the product. | |
2. Tag_Context: New data that might contain additional details. | |
Your job is to read the Tag_Context and update the relevant field in the Tag_History with any new details found. The field to be updated is the {tag} FIELD. | |
Guidelines: | |
- Only add new details that are relevant to the {tag} FIELD. | |
- Do not add or modify any other fields in the Tag_History. | |
- Ensure your response is in coherent sentences, integrating the new details seamlessly into the existing information. | |
Here is the data: | |
Tag_Context: {str(context)} | |
Tag_History: {history} | |
Respond with the updated Tag_History. | |
''' | |
model = random.choice([gemini,gemini1,gemini2,gemini3]) | |
result = model.invoke(prompt) | |
return result.content | |
def feature_extraction_image(url): | |
text = ' ' | |
model = genai.GenerativeModel('gemini-1.5-flash-001') | |
try: | |
res = model.generate_content(['Describe this image to me',url]) | |
text = res.text | |
except: | |
pass | |
return text | |
def detailed_feature_extraction(find, context): | |
prompt = f''' | |
You are an intelligent assistant tasked with finding product information. You have one data source and one output format: | |
1. Context: The gathered information about the product. | |
2. Format: Details which need to be filled based on Context. | |
Your job is to read the Context and update the relevant field in Format using Context. | |
Guidelines: | |
- Only add details that are relevant to the individual FIELD. | |
- Do not add or modify any other fields in the Format. | |
- If nothing found return None. | |
Here is the data: | |
The Context is {str(context)} | |
The Format is {str(find)} | |
''' | |
model = random.choice([gemini,gemini1,gemini2,gemini3]) | |
result = model.invoke(prompt) | |
return result.content | |
def detailed_history(history): | |
details = { | |
"Introduction": { | |
"Product Name": None, | |
"Overview of the product": None, | |
"Purpose of the manual": None, | |
"Audience": None, | |
"Additional Details": None | |
}, | |
"Specifications": { | |
"Technical specifications": None, | |
"Performance metrics": None, | |
"Additional Details": None | |
}, | |
"Product Overview": { | |
"Product features": None, | |
"Key components and parts": None, | |
"Additional Details": None | |
}, | |
"Safety Information": { | |
"Safety warnings and precautions": None, | |
"Compliance and certification information": None, | |
"Additional Details": None | |
}, | |
"Installation Instructions": { | |
"Unboxing and inventory checklist": None, | |
"Step-by-step installation guide": None, | |
"Required tools and materials": None, | |
"Additional Details": None | |
}, | |
"Setup and Configuration": { | |
"Initial setup procedures": None, | |
"Configuration settings": None, | |
"Troubleshooting setup issues": None, | |
"Additional Details": None | |
}, | |
"Operation Instructions": { | |
"How to use the product": None, | |
"Detailed instructions for different functionalities": None, | |
"User interface guide": None, | |
"Additional Details": None | |
}, | |
"Maintenance and Care": { | |
"Cleaning instructions": None, | |
"Maintenance schedule": None, | |
"Replacement parts and accessories": None, | |
"Additional Details": None | |
}, | |
"Troubleshooting": { | |
"Common issues and solutions": None, | |
"Error messages and their meanings": None, | |
"Support Information": None, | |
"Additional Details": None | |
}, | |
"Warranty Information": { | |
"Terms and Conditions": None, | |
"Service and repair information": None, | |
"Additional Details": None | |
}, | |
"Legal Information": { | |
"Copyright information": None, | |
"Trademarks and patents": None, | |
"Disclaimers": None, | |
"Additional Details": None | |
} | |
} | |
for key,val in history.items(): | |
find = details[key] | |
details[key] = str(detailed_feature_extraction(find,val)) | |
return details | |
def get_embeddings(link,tag_option): | |
print(f"\n--> Creating Embeddings - {link}") | |
if tag_option=='Complete Document Similarity': | |
history = { "Details": "" } | |
else: | |
history = { | |
"Introduction": "", | |
"Specifications": "", | |
"Product Overview": "", | |
"Safety Information": "", | |
"Installation Instructions": "", | |
"Setup and Configuration": "", | |
"Operation Instructions": "", | |
"Maintenance and Care": "", | |
"Troubleshooting": "", | |
"Warranty Information": "", | |
"Legal Information": "" | |
} | |
# Extract Text ----------------------------- | |
print("Extracting Text") | |
if link[-3:] == '.md' or link[8:11] == 'en.': | |
text = web_extractor(link) | |
else: | |
text = pdf_extractor(link) | |
# Create Chunks ---------------------------- | |
print("Writing Tag Data") | |
if tag_option=="Complete Document Similarity": | |
history["Details"] = feature_extraction("Details", history["Details"], text[0][:50000]) | |
else: | |
chunks = text_splitter.create_documents(text) | |
for chunk in chunks: | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
future_to_key = { | |
executor.submit( | |
feature_extraction, f"Product {key}", history[key], chunk.page_content | |
): key for key in history | |
} | |
for future in concurrent.futures.as_completed(future_to_key): | |
key = future_to_key[future] | |
try: | |
response = future.result() | |
history[key] = response | |
except Exception as e: | |
print(f"Error processing {key}: {e}") | |
print("Creating Vectors") | |
genai_embeddings=[] | |
for tag in history: | |
result = genai.embed_content( | |
model="models/embedding-001", | |
content=history[tag], | |
task_type="retrieval_document") | |
genai_embeddings.append(result['embedding']) | |
return history,genai_embeddings | |
def get_embed_chroma(link): | |
print(f"\n--> Creating Embeddings - {link}") | |
# Extract Text ----------------------------- | |
if link[-3:] == '.md' or link[8:11] == 'en.': | |
text = web_extractor(link) | |
else: | |
text = pdf_extractor(link) | |
print("\u2713 Extracting Text") | |
# Create Chunks ---------------------------- | |
text = re.sub(r'\.{2,}', '.', text) | |
text = re.sub(r'\s{2,}', ' ', text) | |
text = [re.sub(r'\n{2,}', '\n', text)] | |
chunks = text_splitter_small.create_documents(text) | |
print("\u2713 Writing Tag Data") | |
# Creating Vector | |
embedding_vectors=[] | |
textual_data = [] | |
print("\u2713 Creating Vectors") | |
for text in chunks: | |
inputs = tokenizer(text.page_content, return_tensors="pt", padding=True, truncation=True) | |
inputs = {k: v.to('cpu') for k, v in inputs.items()} | |
# Get the model's outputs | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
embeddings = outputs.last_hidden_state.mean(dim=1) | |
embedding_vectors.append(embeddings.squeeze().cpu().numpy().tolist()) | |
textual_data.append(text.page_content) | |
return textual_data , embedding_vectors | |
def get_image_embeddings(Product): | |
image_embeddings = [] | |
links = search_images(Product) | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
descriptions = list(executor.map(feature_extraction_image, links)) | |
for description in descriptions: | |
result = genai.embed_content( | |
model="models/embedding-001", | |
content=description, | |
task_type="retrieval_document") | |
image_embeddings.append(result['embedding']) | |
# print(image_embeddings) | |
return image_embeddings | |
global text_splitter | |
global data | |
global history | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = 10000, | |
chunk_overlap = 100, | |
separators = ["",''," "] | |
) | |
text_splitter_small = RecursiveCharacterTextSplitter( | |
chunk_size = 2000, | |
chunk_overlap = 100, | |
separators = ["",''," "] | |
) | |
if __name__ == '__main__': | |
# print(get_embed_chroma('https://www.galaxys24manual.com/wp-content/uploads/pdf/galaxy-s24-manual-SAM-S921-S926-S928-OS14-011824-FINAL-US-English.pdf')) | |
print(get_image_embeddings(Product='Samsung Galaxy S24')) |