Test_E5 / preprocess.py
Prathmesh48's picture
Upload 3 files
324113f verified
raw
history blame
6.09 kB
import requests
import json
import random
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from langchain_community.document_loaders import PyPDFLoader
from langdetect import detect_langs
import requests
from PyPDF2 import PdfReader
from io import BytesIO
from langchain_community.document_loaders import WebBaseLoader
from langchain_google_genai import ChatGoogleGenerativeAI
import logging
from pymongo import MongoClient
# Mongo Connections
# srv_connection_uri = "mongodb+srv://adityasm1410:[email protected]/?retryWrites=true&w=majority&appName=Patseer"
# client = MongoClient(srv_connection_uri)
# db = client['embeddings']
# collection = db['data']
# API Urls -----
# main_url = "http://127.0.0.1:5000/search/all"
main_url = "http://127.0.0.1:8000/search/all"
# main_product = "Samsung Galaxy s23 ultra"
# Revelevance Checking Models -----
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)
API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers = {"Authorization": "Bearer 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"}
# Error Debug
logging.basicConfig(level=logging.INFO)
# Global Var --------
data = False
seen = set()
existing_products_urls = set('123')
def get_links(main_product,api_key):
params = {
"API_KEY": f"{api_key}",
"product": f"{main_product}",
}
# Flask
response = requests.get(main_url, params=params)
# FastAPI
# response = requests.post(main_url, json=params)
if response.status_code == 200:
results = response.json()
with open('data.json', 'w') as f:
json.dump(results, f)
else:
print(f"Failed to fetch results: {response.status_code}")
def language_preprocess(text):
try:
if detect_langs(text)[0].lang == 'en':
return True
return False
except:
return False
def relevant(product, similar_product, content):
try:
payload = { "inputs": f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}'''}
# response = requests.post(API_URL, headers=headers, json=payload)
# output = response.json()
# return bool(output[0]['generated_text'])
model = random.choice([gemini,gemini1,gemini2,gemini3])
result = model.invoke(f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}''')
return bool(result)
except:
return False
def download_pdf(url, timeout=10):
try:
response = requests.get(url, timeout=timeout)
response.raise_for_status()
return BytesIO(response.content)
except requests.RequestException as e:
logging.error(f"PDF download error: {e}")
return None
def extract_text_from_pdf(pdf_file, pages):
reader = PdfReader(pdf_file)
extracted_text = ""
l = len(reader.pages)
try:
for page_num in pages:
if page_num < l:
page = reader.pages[page_num]
extracted_text += page.extract_text() + "\n"
else:
print(f"Page {page_num} does not exist in the document.")
return extracted_text
except:
return 'हे चालत नाही'
def extract_text_online(link):
loader = WebBaseLoader(link)
pages = loader.load_and_split()
text = ''
for page in pages[:3]:
text+=page.page_content
return text
def process_link(link, main_product, similar_product):
if link in seen:
return None
seen.add(link)
try:
if link[-3:]=='.md' or link[8:11] == 'en.':
text = extract_text_online(link)
else:
pdf_file = download_pdf(link)
text = extract_text_from_pdf(pdf_file, [0, 2, 4])
if language_preprocess(text):
if relevant(main_product, similar_product, text):
print("Accepted -",link)
return link
except:
pass
print("Rejected -",link)
return None
def filtering(urls, main_product, similar_product, link_count):
res = []
# print(f"Filtering Links of ---- {similar_product}")
# Main Preprocess ------------------------------
# with ThreadPoolExecutor() as executor:
# futures = {executor.submit(process_link, link, main_product, similar_product): link for link in urls}
# for future in concurrent.futures.as_completed(futures):
# result = future.result()
# if result is not None:
# res.append(result)
# return res
count = 0
print(f"--> Filtering Links of - {similar_product}")
for link in urls:
if link in existing_products_urls:
res.append((link,1))
count+=1
else:
result = process_link(link, main_product, similar_product)
if result is not None:
res.append((result,0))
count += 1
if count == link_count:
break
return res
# Main Functions -------------------------------------------------->
# get_links()
# preprocess()