File size: 6,087 Bytes
324113f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import requests
import json
import random
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from langchain_community.document_loaders import PyPDFLoader
from langdetect import detect_langs
import requests
from PyPDF2 import PdfReader
from io import BytesIO
from langchain_community.document_loaders import WebBaseLoader
from langchain_google_genai import ChatGoogleGenerativeAI
import logging
from pymongo import MongoClient


# Mongo Connections
# srv_connection_uri = "mongodb+srv://adityasm1410:[email protected]/?retryWrites=true&w=majority&appName=Patseer"

# client = MongoClient(srv_connection_uri)
# db = client['embeddings'] 
# collection = db['data']     


# API Urls -----

# main_url = "http://127.0.0.1:5000/search/all"
main_url = "http://127.0.0.1:8000/search/all"
# main_product = "Samsung Galaxy s23 ultra"

# Revelevance Checking Models -----
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)


API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers = {"Authorization": "Bearer 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"}

# Error Debug
logging.basicConfig(level=logging.INFO)


# Global Var --------

data = False 
seen = set()
existing_products_urls = set('123')



def get_links(main_product,api_key):
    params = {
        "API_KEY": f"{api_key}",
        "product": f"{main_product}",
    }

    # Flask
    response = requests.get(main_url, params=params)

    # FastAPI
    # response = requests.post(main_url, json=params)


    if response.status_code == 200:
        results = response.json()
        with open('data.json', 'w') as f:
            json.dump(results, f)
    else:
        print(f"Failed to fetch results: {response.status_code}")



def language_preprocess(text):
    try:
        if detect_langs(text)[0].lang == 'en':
            return True
        return False
    except:
        return False


def relevant(product, similar_product, content):

    try:
        payload = { "inputs": f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False  \nContent for similar product:  {content}'''}
        
        # response = requests.post(API_URL, headers=headers, json=payload)
        # output = response.json()
        # return bool(output[0]['generated_text'])
            
        model = random.choice([gemini,gemini1,gemini2,gemini3])
        result = model.invoke(f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False  \nContent for similar product:  {content}''')
        return bool(result)

    except:
        return False
        
        

def download_pdf(url, timeout=10):
    try:
        response = requests.get(url, timeout=timeout)
        response.raise_for_status()
        return BytesIO(response.content)

    except requests.RequestException as e:
        logging.error(f"PDF download error: {e}")
        return None

def extract_text_from_pdf(pdf_file, pages):
    reader = PdfReader(pdf_file)
    extracted_text = ""

    l = len(reader.pages)
    
    try:
        for page_num in pages:
            if page_num < l:
                page = reader.pages[page_num]
                extracted_text += page.extract_text() + "\n"
            else:
                print(f"Page {page_num} does not exist in the document.")
        
        return extracted_text
    
    except:
        return 'हे चालत नाही'
    
def extract_text_online(link):

    loader = WebBaseLoader(link)
    pages = loader.load_and_split()

    text = ''

    for page in pages[:3]:
        text+=page.page_content
    
    return text


def process_link(link, main_product, similar_product):
    if link in seen:
        return None
    seen.add(link)
    try:
        if link[-3:]=='.md' or link[8:11] == 'en.':
            text = extract_text_online(link)
        else:
            pdf_file = download_pdf(link)
            text = extract_text_from_pdf(pdf_file, [0, 2, 4])

        if language_preprocess(text):
            if relevant(main_product, similar_product, text):
                print("Accepted -",link)
                return link
    except:
        pass
    print("Rejected -",link)
    return None

def filtering(urls, main_product, similar_product, link_count):
    res = []

    # print(f"Filtering Links of ---- {similar_product}")
    # Main Preprocess ------------------------------
    # with ThreadPoolExecutor() as executor:
    #     futures = {executor.submit(process_link, link, main_product, similar_product): link for link in urls}
    #     for future in concurrent.futures.as_completed(futures):
    #         result = future.result()
    #         if result is not None:
    #             res.append(result)

    # return res

    count = 0

    print(f"--> Filtering Links of - {similar_product}")

    for link in urls:

        if link in existing_products_urls:
            res.append((link,1))
            count+=1
        
        else:
            result = process_link(link, main_product, similar_product)
        
            if result is not None:
                res.append((result,0))
                count += 1
        
        if count == link_count:
            break

    return res


# Main Functions -------------------------------------------------->

# get_links()
# preprocess()