Spaces:
Sleeping
Sleeping
File size: 11,217 Bytes
45b151c a5bb707 e8887e5 a5bb707 e8887e5 a5bb707 e8887e5 72ff417 e8887e5 a5bb707 e8887e5 a5bb707 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import streamlit as st
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import partial
import numpy as np
from io import StringIO
import sys
import time
import pandas as pd
from pymongo import MongoClient
import plotly.express as px
from pinecone import Pinecone, ServerlessSpec
import chromadb
import requests
from io import BytesIO
from PyPDF2 import PdfReader
import hashlib
import os
import shutil
# File Imports
from embedding import get_embeddings, get_image_embeddings, get_embed_chroma , imporve_text # Ensure this file/module is available
from preprocess import filtering # Ensure this file/module is available
from search import *
# Chroma Connections
client = chromadb.PersistentClient(path="embeddings")
collection = client.get_or_create_collection(name="data", metadata={"hnsw:space": "l2"})
def zip_folder(folder_path, zip_name):
# Create a zip file from the folder
shutil.make_archive(zip_name, 'zip', folder_path)
return zip_name + '.zip'
folder_path = '/home/user/app/embeddings'
zip_name = 'embedding'
# st.title("Download Embedding Folder")
def generate_hash(content):
return hashlib.sha256(content.encode('utf-8')).hexdigest()
def get_key(link):
text = ''
try:
# Fetch the PDF file from the URL
response = requests.get(link)
response.raise_for_status() # Raise an error for bad status codes
# Use BytesIO to handle the PDF content in memory
pdf_file = BytesIO(response.content)
# Load the PDF file
reader = PdfReader(pdf_file)
num_pages = len(reader.pages)
first_page_text = reader.pages[0].extract_text()
if first_page_text:
text += first_page_text
last_page_text = reader.pages[-1].extract_text()
if last_page_text:
text += last_page_text
except requests.exceptions.HTTPError as e:
print(f'HTTP error occurred: {e}')
except Exception as e:
print(f'An error occurred: {e}')
unique_key = generate_hash(text)
return unique_key
# Cosine Similarity Function
def cosine_similarity(vec1, vec2):
vec1 = np.array(vec1)
vec2 = np.array(vec2)
dot_product = np.dot(vec1, vec2.T)
magnitude_vec1 = np.linalg.norm(vec1)
magnitude_vec2 = np.linalg.norm(vec2)
if magnitude_vec1 == 0 or magnitude_vec2 == 0:
return 0.0
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
return cosine_sim
def update_chroma(product_name, url, key, text, vector, log_area):
id_list = [key + str(i) for i in range(len(text))]
metadata_list = [
{'key': key,
'product_name': product_name,
'url': url,
'text': item
}
for item in text
]
collection.upsert(
ids=id_list,
embeddings=vector,
metadatas=metadata_list
)
logger.write(f"\n\u2713 Updated DB - {url}\n\n")
log_area.text(logger.getvalue())
# Logger class to capture output
class StreamCapture:
def __init__(self):
self.output = StringIO()
self._stdout = sys.stdout
def __enter__(self):
sys.stdout = self.output
return self.output
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout = self._stdout
# Main Function
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
data = {}
similar_products = extract_similar_products(main_product)[:product_count]
print("--> Fetching Manual Links")
# Normal Filtering + Embedding -----------------------------------------------
if search == 'All':
def process_product(product, search_function, main_product):
search_result = search_function(product)
return filtering(search_result, main_product, product, link_count)
search_functions = {
'google': search_google,
'duckduckgo': search_duckduckgo,
'github': search_github,
'wikipedia': search_wikipedia
}
with ThreadPoolExecutor() as executor:
future_to_product_search = {
executor.submit(process_product, product, search_function, main_product): (product, search_name)
for product in similar_products
for search_name, search_function in search_functions.items()
}
for future in as_completed(future_to_product_search):
product, search_name = future_to_product_search[future]
try:
if product not in data:
data[product] = {}
data[product] = future.result()
except Exception as e:
print(f"Error processing product {product} with {search_name}: {e}")
else:
for product in similar_products:
if search == 'google':
data[product] = filtering(search_google(product), main_product, product, link_count)
elif search == 'duckduckgo':
data[product] = filtering(search_duckduckgo(product), main_product, product, link_count)
elif search == 'archive':
data[product] = filtering(search_archive(product), main_product, product, link_count)
elif search == 'github':
data[product] = filtering(search_github(product), main_product, product, link_count)
elif search == 'wikipedia':
data[product] = filtering(search_wikipedia(product), main_product, product, link_count)
# Filtered Link -----------------------------------------
logger.write("\n\n\u2713 Filtered Links\n")
log_area.text(logger.getvalue())
# Main product Embeddings ---------------------------------
logger.write("\n\n--> Creating Main product Embeddings\n")
main_key = get_key(main_url)
main_text, main_vector = get_embed_chroma(main_url)
update_chroma(main_product, main_url, main_key, main_text, main_vector, log_area)
# log_area.text(logger.getvalue())
print("\n\n\u2713 Main Product embeddings Created")
logger.write("\n\n--> Creating Similar product Embeddings\n")
log_area.text(logger.getvalue())
test_embedding = [0] * 768
for product in data:
for link in data[product]:
url, _ = link
similar_key = get_key(url)
res = collection.query(
query_embeddings=[test_embedding],
n_results=1,
where={"key": similar_key},
)
if not res['distances'][0]:
similar_text, similar_vector = get_embed_chroma(url)
update_chroma(product, url, similar_key, similar_text, similar_vector, log_area)
logger.write("\n\n\u2713 Similar Product embeddings Created\n")
log_area.text(logger.getvalue())
top_similar = []
for idx, chunk in enumerate(main_vector):
res = collection.query(
query_embeddings=[chunk],
n_results=1,
where={"key": {'$ne': main_key}},
include=['metadatas', 'embeddings', 'distances']
)
top_similar.append((main_text[idx], chunk, res, res['distances'][0]))
most_similar_items = sorted(top_similar, key=lambda x: x[3])[:top_similar_count]
logger.write("--------------- DONE -----------------\n")
log_area.text(logger.getvalue())
return most_similar_items
# Streamlit Interface
st.title("Check Infringement")
# Inputs
with st.sidebar:
st.header("Product Information")
main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
st.header("Search Settings")
search_method = st.selectbox('Choose Search Engine', ['All', 'duckduckgo', 'google', 'archive', 'github', 'wikipedia'])
product_count = st.number_input("Number of Similar Products", min_value=1, step=1, format="%i")
link_count = st.number_input("Number of Links per Product", min_value=1, step=1, format="%i")
need_image = st.selectbox("Process Images", ['True', 'False'])
top_similar_count = st.number_input("Top Similarities to be Displayed", value=3, min_value=1, step=1, format="%i")
if st.button("Download"):
zip_file = zip_folder(folder_path, zip_name)
with open(zip_file, "rb") as f:
st.download_button(
label="Download ZIP",
data=f,
file_name=zip_file,
mime="application/zip"
)
if st.button('Check for Infringement'):
global log_output # Placeholder for log output
tab1, tab2 = st.tabs(["Output", "Console"])
with tab2:
log_output = st.empty()
with tab1:
with st.spinner('Processing...'):
with StreamCapture() as logger:
top_similar_values = score(main_product, main_url, product_count, link_count, search_method, logger, log_output)
st.success('Processing complete!')
st.subheader("Cosine Similarity Scores")
for main_text, main_vector, response, _ in top_similar_values:
product_name = response['metadatas'][0][0]['product_name']
link = response['metadatas'][0][0]['url']
similar_text = response['metadatas'][0][0]['text']
cosine_score = cosine_similarity([main_vector], response['embeddings'][0])[0][0]
# Display the product information
with st.container():
st.markdown(f"### [Product: {product_name}]({link})")
st.markdown(f"#### Cosine Score: {cosine_score:.4f}")
col1, col2 = st.columns(2)
with col1:
st.markdown(f"**Main Text:** {imporve_text(main_text)}")
with col2:
st.markdown(f"**Similar Text:** {imporve_text(similar_text)}")
st.markdown("---")
if need_image == 'True':
with st.spinner('Processing Images...'):
emb_main = get_image_embeddings(main_product)
similar_prod = extract_similar_products(main_product)[0]
emb_similar = get_image_embeddings(similar_prod)
similarity_matrix = np.zeros((5, 5))
for i in range(5):
for j in range(5):
similarity_matrix[i][j] = cosine_similarity([emb_main[i]], [emb_similar[j]])[0][0]
st.subheader("Image Similarity")
# Create an interactive heatmap
fig = px.imshow(similarity_matrix,
labels=dict(x=f"{similar_prod} Images", y=f"{main_product} Images", color="Similarity"),
x=[f"Image {i+1}" for i in range(5)],
y=[f"Image {i+1}" for i in range(5)],
color_continuous_scale="Viridis")
# Add title to the heatmap
fig.update_layout(title="Image Similarity Heatmap")
# Display the interactive heatmap
st.plotly_chart(fig)
|