Spaces:
Sleeping
Sleeping
Prathmesh48
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
|
5 |
+
# Load the tokenizer and model
|
6 |
+
@st.cache_resource
|
7 |
+
def load_model():
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained('dwzhu/e5-base-4k', trust_remote_code=True)
|
9 |
+
model = AutoModel.from_pretrained('dwzhu/e5-base-4k', trust_remote_code=True)
|
10 |
+
model.to('cpu')
|
11 |
+
return tokenizer, model
|
12 |
+
|
13 |
+
tokenizer, model = load_model()
|
14 |
+
|
15 |
+
def extract_embeddings(text, tokenizer, model):
|
16 |
+
# Tokenize the input text
|
17 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
18 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
19 |
+
|
20 |
+
# Get the model's outputs
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model(**inputs)
|
23 |
+
|
24 |
+
# Extract the embeddings (use the output of the last hidden state)
|
25 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
26 |
+
|
27 |
+
return embeddings.squeeze().cpu().numpy()
|
28 |
+
|
29 |
+
# Streamlit app
|
30 |
+
st.title("Text Embeddings Extractor")
|
31 |
+
|
32 |
+
text = st.text_area("Enter text to extract embeddings:", "This is an example sentence.")
|
33 |
+
|
34 |
+
if st.button("Extract Embeddings"):
|
35 |
+
embeddings = extract_embeddings(text, tokenizer, model)
|
36 |
+
st.write("Embeddings:")
|
37 |
+
st.write(embeddings)
|