FashionGen / pages /Fusion Fashion.py
Prathm's picture
Aesthetic changes
06e04b1
raw
history blame
11.6 kB
import random
import streamlit as st
import torch
import PIL
import numpy as np
from PIL import Image
import imageio
from models import get_instrumented_model
from decomposition import get_or_compute
from config import Config
from skimage import img_as_ubyte
import clip
from torchvision.transforms import Resize, Normalize, Compose, CenterCrop
from torch.optim import Adam
from stqdm import stqdm
st.set_page_config(
page_title="Fusion Fashion",
page_icon="👗",
)
#torch.set_num_threads(8)
# Speed up computation
torch.autograd.set_grad_enabled(True)
torch.backends.cudnn.benchmark = True
# Specify model to use
config = Config(
model='StyleGAN2',
layer='style',
output_class= 'lookbook',
components=80,
use_w=True,
batch_size=5_000, # style layer quite small
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
preprocess = Compose([
Resize(224),
CenterCrop(224),
Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
])
@st.cache_data
def clip_optimized_latent(text, seed, iterations=25, lr=1e-2):
seed = int(seed)
text_input = clip.tokenize([text]).to(device)
# Initialize a random latent vector
latent_vector = model.sample_latent(1,seed=seed).detach().to(device)
latent_vector.requires_grad = True
latent_vector = [latent_vector]*model.get_max_latents()
params = [torch.nn.Parameter(latent_vector[i], requires_grad=True) for i in range(len(latent_vector))]
optimizer = Adam(params, lr=lr, betas=(0.9, 0.999))
#with torch.no_grad():
# text_features = clip_model.encode_text(text_input)
#pbar = tqdm(range(iterations), dynamic_ncols=True)
for iteration in stqdm(range(iterations)):
optimizer.zero_grad()
# Generate an image from the latent vector
image = model.sample(params)
image = image.to(device)
# Preprocess the image for the CLIP model
image = preprocess(image)
#image = clip_preprocess(Image.fromarray((image_np * 255).astype(np.uint8))).unsqueeze(0).to(device)
# Extract features from the image
#image_features = clip_model.encode_image(image)
# Calculate the loss and backpropagate
loss = 1 - clip_model(image, text_input)[0] / 100
#loss = -torch.cosine_similarity(text_features, image_features).mean()
loss.backward()
optimizer.step()
#pbar.set_description(f"Loss: {loss.item()}") # Update the progress bar to show the current loss
w = [param.detach().cpu().numpy() for param in params]
return w
def mix_w(w1, w2, content, style):
for i in range(0,5):
w2[i] = w1[i] * (1 - content) + w2[i] * content
for i in range(5, 16):
w2[i] = w1[i] * (1 - style) + w2[i] * style
return w2
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
# blockPrint()
model.truncation = truncation
if w is None:
w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
w = [w]*model.get_max_latents() # one per layer
else:
w_numpy = [x.cpu().detach().numpy() for x in w]
w = [np.expand_dims(x, 0) for x in w_numpy]
#w = [x.unsqueeze(0) for x in w]
for l in range(start, end):
for i in range(len(directions)):
w[l] = w[l] + directions[i] * distances[i] * scale
w = [torch.from_numpy(x).to(device) for x in w]
torch.cuda.empty_cache()
#save image and display
out = model.sample(w)
out = out.permute(0, 2, 3, 1).cpu().detach().numpy()
out = np.clip(out, 0.0, 1.0).squeeze()
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
if save is not None:
if disp == False:
print(save)
final_im.save(f'out/{seed}_{save:05}.png')
if disp:
display(final_im)
return final_im
## Generate image for app
def generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,w1,w2):
scale = 1
params = {'c0': c0,
'c1': c1,
'c2': c2,
'c3': c3,
'c4': c4,
'c5': c5,
'c6': c6}
param_indexes = {'c0': 0,
'c1': 1,
'c2': 2,
'c3': 3,
'c4': 4,
'c5': 5,
'c6': 6}
directions = []
distances = []
for k, v in params.items():
directions.append(latent_dirs[param_indexes[k]])
distances.append(v)
if w1 is not None and w2 is not None:
w1 = [torch.from_numpy(x).to(device) for x in w1]
w2 = [torch.from_numpy(x).to(device) for x in w2]
#w1 = clip_optimized_latent(text1, seed1, iters)
im1 = model.sample(w1)
im1_np = im1.permute(0, 2, 3, 1).cpu().detach().numpy()
im1_np = np.clip(im1_np, 0.0, 1.0).squeeze()
#w2 = clip_optimized_latent(text2, seed2, iters)
im2 = model.sample(w2)
im2_np = im2.permute(0, 2, 3, 1).cpu().detach().numpy()
im2_np = np.clip(im2_np, 0.0, 1.0).squeeze()
combined_im = np.concatenate([im1_np, im2_np], axis=1)
input_im = Image.fromarray((combined_im * 255).astype(np.uint8))
mixed_w = mix_w(w1, w2, content, style)
return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)
# Streamlit app title
st.image('./pics/logo.jpeg', width = 250)
'''## Fusion Fashion'''
@st.cache_resource
def load_model():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the pre-trained CLIP model
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
inst = get_instrumented_model(config.model, config.output_class,
config.layer, device, use_w=config.use_w)
return clip_model, inst
# Then, to load your models, call this function:
clip_model, inst = load_model()
model = inst.model
path_to_components = get_or_compute(config, inst)
comps = np.load(path_to_components)
lst = comps.files
latent_dirs = []
latent_stdevs = []
load_activations = False
for item in lst:
if load_activations:
if item == 'act_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'act_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
else:
if item == 'lat_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'lat_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
## Side bar texts
st.sidebar.title('Customization Options')
# Create UI widgets
text1 = st.sidebar.text_input("Style Specs 1", help = "Provide a clear and concise description of the design you wish to generate. This helps the app understand your preferences and create a customized design that matches your vision.")
text2 = st.sidebar.text_input("Style Specs 2", help = "Provide a clear and concise description of the design you wish to generate. This helps the app understand your preferences and create a customized design that matches your vision.")
if 'seed1' not in st.session_state and 'seed2' not in st.session_state:
st.session_state['seed1'] = random.randint(1, 1000)
st.session_state['seed2'] = random.randint(1, 1000)
with st.sidebar.expander("Advanced"):
seed1 = st.number_input("ID 1", value= st.session_state['seed1'], help = "Capture this unique id to reproduce the exact same result later.")
seed2 = st.number_input("ID 2", value= st.session_state['seed2'], help = "Capture this unique id to reproduce the exact same result later.")
st.session_state['seed1'] = seed1
st.session_state['seed2'] = seed2
iters = st.number_input("Cycles", value = 25, help = "Increase the sensitivity of the algorithm to find the design matching the style description. Higher values might enhance the accuracy but may lead to slower loading times")
submit_button = st.sidebar.button("Discover")
content = st.sidebar.slider("Design Frame", min_value=0.0, max_value=1.0, value=0.5, help = "Increasing it makes the structure similar to the image on the right and decreasing it will make the structure similar to the image on the left")
style = st.sidebar.slider("Style Composition", min_value=0.0, max_value=1.0, value=0.5, help = "Increasing it makes the style/pattern similar to the image on the right and decreasing it will make the style/pattern similar to the image on the left")
truncation = 0.5
#truncation = st.sidebar.slider("Dimensional Scaling", min_value=0.0, max_value=1.0, value=0.5)
slider_min_val = -20
slider_max_val = 20
slider_step = 1
c0 = st.sidebar.slider("Sleeve Size Scaling", min_value=slider_min_val, max_value=slider_max_val, value=0, help="Adjust the scaling of sleeve sizes. Increase to make sleeve sizes appear larger, and decrease to make them appear smaller.")
c1 = st.sidebar.slider("Jacket Features", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Control the prominence of jacket features. Increasing this value will make the features more pronounced, while decreasing it will make them less noticeable")
c2 = st.sidebar.slider("Women's Overcoat", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Modify the dominance of the women's overcoat style. Increase the value to enhance its prominence, and decrease it to reduce its impact.")
c3 = st.sidebar.slider("Coat", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Control the prominence of coat features. Increasing this value will make the features more pronounced, while decreasing it will make them less noticeable")
c4 = st.sidebar.slider("Graphic Elements", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Fine-tune the visibility of graphic elements. Increasing this value will make the graphics more prominent, while decreasing it will make them less visible.")
c5 = st.sidebar.slider("Darker Color", min_value=slider_min_val, max_value=slider_max_val, value=0, help = "Adjust the intensity of the color tones towards darker shades. Increasing this value will make the colors appear deeper, while decreasing it will lighten the overall color palette.")
c6 = st.sidebar.slider("Neckline", min_value=slider_min_val, max_value=slider_max_val, value=0,help = "Control the emphasis on the neckline of the garment. Increase to highlight the neckline, and decrease to downplay its prominence.")
start_layer = 0
end_layer = 14
#start_layer = st.sidebar.number_input("Start Layer", value=0)
#end_layer = st.sidebar.number_input("End Layer", value=14)
# if 'w1-np' not in st.session_state:
# st.session_state['w1-np'] = None
# if 'w2-np' not in st.session_state:
# st.session_state['w2-np'] = None
if submit_button: # Execute when the submit button is pressed
w1 = clip_optimized_latent(text1, seed1, iters)
st.session_state['w1-np'] = w1
w2 = clip_optimized_latent(text2, seed2, iters)
st.session_state['w2-np'] = w2
try:
input_im, output_im = generate_image(content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer,st.session_state['w1-np'],st.session_state['w2-np'])
st.image(input_im, caption="Input Image")
st.image(output_im, caption="Output Image")
except:
pass