File size: 6,247 Bytes
337965d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Copyright 2020 Erik Härkönen. All rights reserved.\n",
    "# This file is licensed to you under the Apache License, Version 2.0 (the \"License\");\n",
    "# you may not use this file except in compliance with the License. You may obtain a copy\n",
    "# of the License at http://www.apache.org/licenses/LICENSE-2.0\n",
    "\n",
    "# Unless required by applicable law or agreed to in writing, software distributed under\n",
    "# the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS\n",
    "# OF ANY KIND, either express or implied. See the License for the specific language\n",
    "# governing permissions and limitations under the License.\n",
    "\n",
    "# Show top 10 PCs for StyleGAN2 ffhq\n",
    "# Center along component before manipulation\n",
    "# Also show cleaned up PCs based on top10, a couple of cleaned up later style PCs\n",
    "%matplotlib inline\n",
    "from notebook_init import *\n",
    "\n",
    "out_root = Path('out/figures/pca_cleanup')\n",
    "makedirs(out_root / 'tuned', exist_ok=True)\n",
    "makedirs(out_root / 'global', exist_ok=True)\n",
    "rand = lambda : np.random.randint(np.iinfo(np.int32).max)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "use_w = True\n",
    "inst = get_instrumented_model('StyleGAN2', 'ffhq', 'style', device, inst=inst, use_w=use_w)\n",
    "model = inst.model\n",
    "model.truncation = 1.0\n",
    "\n",
    "pc_config = Config(components=80, n=1_000_000, use_w=use_w,\n",
    "    layer='style', model='StyleGAN2', output_class='ffhq')\n",
    "dump_name = get_or_compute(pc_config, inst)\n",
    "\n",
    "with np.load(dump_name) as data:\n",
    "    lat_comp = torch.from_numpy(data['lat_comp']).to(device)\n",
    "    lat_mean = torch.from_numpy(data['lat_mean']).to(device)\n",
    "    lat_std = data['lat_stdev']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "seeds_ffhq = [366745668] #, 1502970553, 1235907362, 1302626592]\n",
    "#seeds_ffhq = [rand() for _ in range(50)]\n",
    "\n",
    "n_pcs = 14\n",
    "\n",
    "# Case 1: Normal centered PCs\n",
    "for seed in seeds_ffhq:\n",
    "    print(seed)\n",
    "    \n",
    "    strips = []\n",
    "    \n",
    "    for i in range(n_pcs):\n",
    "        z = model.sample_latent(1, seed=seed)\n",
    "        batch_frames = create_strip_centered(inst, 'latent', 'style', [z],\n",
    "            0, lat_comp[i], 0, lat_std[i], 0, lat_mean, 2.0, 0, 18, num_frames=7)[0]\n",
    "        strips.append(np.hstack(pad_frames(batch_frames)))\n",
    "        for j, frame in enumerate(batch_frames):\n",
    "            Image.fromarray(np.uint8(frame*255)).save(out_root / 'global' / f'{seed}_pc{i}_{j}.png')\n",
    "    \n",
    "    #col_left = np.vstack(pad_frames(strips[:n_pcs//2], 0, 64))\n",
    "    #col_right = np.vstack(pad_frames(strips[n_pcs//2:], 0, 64))\n",
    "    grid = np.vstack(strips)\n",
    "    \n",
    "    Image.fromarray(np.uint8(grid*255)).save(out_root / f'grid_{seed}.jpg')\n",
    "    \n",
    "    plt.figure(figsize=(20,40))\n",
    "    plt.imshow(grid)\n",
    "    plt.axis('off')\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "# Case 2: hand-tuned layer ranges for some directions\n",
    "hand_tuned = [\n",
    "     ( 0, (1,  7), 2.0), # gender, keep age\n",
    "     ( 1, (0,  3), 2.0), # rotate, keep gender\n",
    "     ( 2, (3,  8), 2.0), # gender, keep geometry\n",
    "     ( 3, (2,  8), 2.0), # age, keep lighting, no hat\n",
    "     ( 4, (5, 18), 2.0), # background, keep geometry\n",
    "     ( 5, (0,  4), 2.0), # hat, keep lighting and age\n",
    "     ( 6, (7, 18), 2.0), # just lighting\n",
    "     ( 7, (5,  9), 2.0), # just lighting\n",
    "     ( 8, (1,  7), 2.0), # age, keep lighting\n",
    "     ( 9, (0,  5), 2.0), # keep lighting\n",
    "     (10, (7,  9), 2.0), # hair color, keep geom\n",
    "     (11, (0,  5), 2.0), # hair length, keep color\n",
    "     (12, (8,  9), 2.0), # light dir lr\n",
    "#      (12, (4,  10), 2.0), # light position LR\n",
    "     (13, (0,  6), 2.0), # about the same\n",
    "]\n",
    "\n",
    "for seed in seeds_ffhq:\n",
    "    print(seed)\n",
    "    \n",
    "    strips = []\n",
    "    \n",
    "    for i, (s, e), sigma in hand_tuned:\n",
    "        z = model.sample_latent(1, seed=seed)\n",
    "        \n",
    "        batch_frames = create_strip_centered(inst, 'latent', 'style', [z],\n",
    "            0, lat_comp[i], 0, lat_std[i], 0, lat_mean, sigma, s, e, num_frames=7)[0]\n",
    "        strips.append(np.hstack(pad_frames(batch_frames)))\n",
    "        for j, frame in enumerate(batch_frames):\n",
    "            Image.fromarray(np.uint8(frame*255)).save(out_root / 'tuned' / f'{seed}_pc{i}_s{s}_e{e}_{j}.png')\n",
    "    \n",
    "    #col_left = np.vstack(pad_frames(strips[:len(strips)//2], 0, 64))\n",
    "    #col_right = np.vstack(pad_frames(strips[len(strips)//2:], 0, 64))\n",
    "    #grid = np.hstack(pad_frames(strips, 16))\n",
    "    grid = np.vstack(strips)\n",
    "    \n",
    "    Image.fromarray(np.uint8(grid*255)).save(out_root / f'grid_{seed}_tuned.jpg')\n",
    "    \n",
    "    plt.figure(figsize=(20,40))\n",
    "    plt.imshow(grid)\n",
    "    plt.axis('off')\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}