Spaces:
Runtime error
Runtime error
File size: 6,247 Bytes
337965d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Copyright 2020 Erik Härkönen. All rights reserved.\n",
"# This file is licensed to you under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License. You may obtain a copy\n",
"# of the License at http://www.apache.org/licenses/LICENSE-2.0\n",
"\n",
"# Unless required by applicable law or agreed to in writing, software distributed under\n",
"# the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS\n",
"# OF ANY KIND, either express or implied. See the License for the specific language\n",
"# governing permissions and limitations under the License.\n",
"\n",
"# Show top 10 PCs for StyleGAN2 ffhq\n",
"# Center along component before manipulation\n",
"# Also show cleaned up PCs based on top10, a couple of cleaned up later style PCs\n",
"%matplotlib inline\n",
"from notebook_init import *\n",
"\n",
"out_root = Path('out/figures/pca_cleanup')\n",
"makedirs(out_root / 'tuned', exist_ok=True)\n",
"makedirs(out_root / 'global', exist_ok=True)\n",
"rand = lambda : np.random.randint(np.iinfo(np.int32).max)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"use_w = True\n",
"inst = get_instrumented_model('StyleGAN2', 'ffhq', 'style', device, inst=inst, use_w=use_w)\n",
"model = inst.model\n",
"model.truncation = 1.0\n",
"\n",
"pc_config = Config(components=80, n=1_000_000, use_w=use_w,\n",
" layer='style', model='StyleGAN2', output_class='ffhq')\n",
"dump_name = get_or_compute(pc_config, inst)\n",
"\n",
"with np.load(dump_name) as data:\n",
" lat_comp = torch.from_numpy(data['lat_comp']).to(device)\n",
" lat_mean = torch.from_numpy(data['lat_mean']).to(device)\n",
" lat_std = data['lat_stdev']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"seeds_ffhq = [366745668] #, 1502970553, 1235907362, 1302626592]\n",
"#seeds_ffhq = [rand() for _ in range(50)]\n",
"\n",
"n_pcs = 14\n",
"\n",
"# Case 1: Normal centered PCs\n",
"for seed in seeds_ffhq:\n",
" print(seed)\n",
" \n",
" strips = []\n",
" \n",
" for i in range(n_pcs):\n",
" z = model.sample_latent(1, seed=seed)\n",
" batch_frames = create_strip_centered(inst, 'latent', 'style', [z],\n",
" 0, lat_comp[i], 0, lat_std[i], 0, lat_mean, 2.0, 0, 18, num_frames=7)[0]\n",
" strips.append(np.hstack(pad_frames(batch_frames)))\n",
" for j, frame in enumerate(batch_frames):\n",
" Image.fromarray(np.uint8(frame*255)).save(out_root / 'global' / f'{seed}_pc{i}_{j}.png')\n",
" \n",
" #col_left = np.vstack(pad_frames(strips[:n_pcs//2], 0, 64))\n",
" #col_right = np.vstack(pad_frames(strips[n_pcs//2:], 0, 64))\n",
" grid = np.vstack(strips)\n",
" \n",
" Image.fromarray(np.uint8(grid*255)).save(out_root / f'grid_{seed}.jpg')\n",
" \n",
" plt.figure(figsize=(20,40))\n",
" plt.imshow(grid)\n",
" plt.axis('off')\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"# Case 2: hand-tuned layer ranges for some directions\n",
"hand_tuned = [\n",
" ( 0, (1, 7), 2.0), # gender, keep age\n",
" ( 1, (0, 3), 2.0), # rotate, keep gender\n",
" ( 2, (3, 8), 2.0), # gender, keep geometry\n",
" ( 3, (2, 8), 2.0), # age, keep lighting, no hat\n",
" ( 4, (5, 18), 2.0), # background, keep geometry\n",
" ( 5, (0, 4), 2.0), # hat, keep lighting and age\n",
" ( 6, (7, 18), 2.0), # just lighting\n",
" ( 7, (5, 9), 2.0), # just lighting\n",
" ( 8, (1, 7), 2.0), # age, keep lighting\n",
" ( 9, (0, 5), 2.0), # keep lighting\n",
" (10, (7, 9), 2.0), # hair color, keep geom\n",
" (11, (0, 5), 2.0), # hair length, keep color\n",
" (12, (8, 9), 2.0), # light dir lr\n",
"# (12, (4, 10), 2.0), # light position LR\n",
" (13, (0, 6), 2.0), # about the same\n",
"]\n",
"\n",
"for seed in seeds_ffhq:\n",
" print(seed)\n",
" \n",
" strips = []\n",
" \n",
" for i, (s, e), sigma in hand_tuned:\n",
" z = model.sample_latent(1, seed=seed)\n",
" \n",
" batch_frames = create_strip_centered(inst, 'latent', 'style', [z],\n",
" 0, lat_comp[i], 0, lat_std[i], 0, lat_mean, sigma, s, e, num_frames=7)[0]\n",
" strips.append(np.hstack(pad_frames(batch_frames)))\n",
" for j, frame in enumerate(batch_frames):\n",
" Image.fromarray(np.uint8(frame*255)).save(out_root / 'tuned' / f'{seed}_pc{i}_s{s}_e{e}_{j}.png')\n",
" \n",
" #col_left = np.vstack(pad_frames(strips[:len(strips)//2], 0, 64))\n",
" #col_right = np.vstack(pad_frames(strips[len(strips)//2:], 0, 64))\n",
" #grid = np.hstack(pad_frames(strips, 16))\n",
" grid = np.vstack(strips)\n",
" \n",
" Image.fromarray(np.uint8(grid*255)).save(out_root / f'grid_{seed}_tuned.jpg')\n",
" \n",
" plt.figure(figsize=(20,40))\n",
" plt.imshow(grid)\n",
" plt.axis('off')\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|