Spaces:
Runtime error
Runtime error
File size: 30,952 Bytes
337965d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
'''
Running statistics on the GPU using pytorch.
RunningTopK maintains top-k statistics for a set of channels in parallel.
RunningQuantile maintains (sampled) quantile statistics for a set of channels.
'''
import torch, math, numpy
from collections import defaultdict
class RunningTopK:
'''
A class to keep a running tally of the the top k values (and indexes)
of any number of torch feature components. Will work on the GPU if
the data is on the GPU.
This version flattens all arrays to avoid crashes.
'''
def __init__(self, k=100, state=None):
if state is not None:
self.set_state_dict(state)
return
self.k = k
self.count = 0
# This version flattens all data internally to 2-d tensors,
# to avoid crashes with the current pytorch topk implementation.
# The data is puffed back out to arbitrary tensor shapes on ouput.
self.data_shape = None
self.top_data = None
self.top_index = None
self.next = 0
self.linear_index = 0
self.perm = None
def add(self, data):
'''
Adds a batch of data to be considered for the running top k.
The zeroth dimension enumerates the observations. All other
dimensions enumerate different features.
'''
if self.top_data is None:
# Allocation: allocate a buffer of size 5*k, at least 10, for each.
self.data_shape = data.shape[1:]
feature_size = int(numpy.prod(self.data_shape))
self.top_data = torch.zeros(
feature_size, max(10, self.k * 5), out=data.new())
self.top_index = self.top_data.clone().long()
self.linear_index = 0 if len(data.shape) == 1 else torch.arange(
feature_size, out=self.top_index.new()).mul_(
self.top_data.shape[-1])[:,None]
size = data.shape[0]
sk = min(size, self.k)
if self.top_data.shape[-1] < self.next + sk:
# Compression: if full, keep topk only.
self.top_data[:,:self.k], self.top_index[:,:self.k] = (
self.result(sorted=False, flat=True))
self.next = self.k
free = self.top_data.shape[-1] - self.next
# Pick: copy the top sk of the next batch into the buffer.
# Currently strided topk is slow. So we clone after transpose.
# TODO: remove the clone() if it becomes faster.
cdata = data.contiguous().view(size, -1).t().clone()
td, ti = cdata.topk(sk, sorted=False)
self.top_data[:,self.next:self.next+sk] = td
self.top_index[:,self.next:self.next+sk] = (ti + self.count)
self.next += sk
self.count += size
def result(self, sorted=True, flat=False):
'''
Returns top k data items and indexes in each dimension,
with channels in the first dimension and k in the last dimension.
'''
k = min(self.k, self.next)
# bti are top indexes relative to buffer array.
td, bti = self.top_data[:,:self.next].topk(k, sorted=sorted)
# we want to report top indexes globally, which is ti.
ti = self.top_index.view(-1)[
(bti + self.linear_index).view(-1)
].view(*bti.shape)
if flat:
return td, ti
else:
return (td.view(*(self.data_shape + (-1,))),
ti.view(*(self.data_shape + (-1,))))
def to_(self, device):
self.top_data = self.top_data.to(device)
self.top_index = self.top_index.to(device)
if isinstance(self.linear_index, torch.Tensor):
self.linear_index = self.linear_index.to(device)
def state_dict(self):
return dict(
constructor=self.__module__ + '.' +
self.__class__.__name__ + '()',
k=self.k,
count=self.count,
data_shape=tuple(self.data_shape),
top_data=self.top_data.cpu().numpy(),
top_index=self.top_index.cpu().numpy(),
next=self.next,
linear_index=(self.linear_index.cpu().numpy()
if isinstance(self.linear_index, torch.Tensor)
else self.linear_index),
perm=self.perm)
def set_state_dict(self, dic):
self.k = dic['k'].item()
self.count = dic['count'].item()
self.data_shape = tuple(dic['data_shape'])
self.top_data = torch.from_numpy(dic['top_data'])
self.top_index = torch.from_numpy(dic['top_index'])
self.next = dic['next'].item()
self.linear_index = (torch.from_numpy(dic['linear_index'])
if len(dic['linear_index'].shape) > 0
else dic['linear_index'].item())
class RunningQuantile:
"""
Streaming randomized quantile computation for torch.
Add any amount of data repeatedly via add(data). At any time,
quantile estimates (or old-style percentiles) can be read out using
quantiles(q) or percentiles(p).
Accuracy scales according to resolution: the default is to
set resolution to be accurate to better than 0.1%,
while limiting storage to about 50,000 samples.
Good for computing quantiles of huge data without using much memory.
Works well on arbitrary data with probability near 1.
Based on the optimal KLL quantile algorithm by Karnin, Lang, and Liberty
from FOCS 2016. http://ieee-focs.org/FOCS-2016-Papers/3933a071.pdf
"""
def __init__(self, resolution=6 * 1024, buffersize=None, seed=None,
state=None):
if state is not None:
self.set_state_dict(state)
return
self.depth = None
self.dtype = None
self.device = None
self.resolution = resolution
# Default buffersize: 128 samples (and smaller than resolution).
if buffersize is None:
buffersize = min(128, (resolution + 7) // 8)
self.buffersize = buffersize
self.samplerate = 1.0
self.data = None
self.firstfree = [0]
self.randbits = torch.ByteTensor(resolution)
self.currentbit = len(self.randbits) - 1
self.extremes = None
self.size = 0
def _lazy_init(self, incoming):
self.depth = incoming.shape[1]
self.dtype = incoming.dtype
self.device = incoming.device
self.data = [torch.zeros(self.depth, self.resolution,
dtype=self.dtype, device=self.device)]
self.extremes = torch.zeros(self.depth, 2,
dtype=self.dtype, device=self.device)
self.extremes[:,0] = float('inf')
self.extremes[:,-1] = -float('inf')
def to_(self, device):
"""Switches internal storage to specified device."""
if device != self.device:
old_data = self.data
old_extremes = self.extremes
self.data = [d.to(device) for d in self.data]
self.extremes = self.extremes.to(device)
self.device = self.extremes.device
del old_data
del old_extremes
def add(self, incoming):
if self.depth is None:
self._lazy_init(incoming)
assert len(incoming.shape) == 2
assert incoming.shape[1] == self.depth, (incoming.shape[1], self.depth)
self.size += incoming.shape[0]
# Convert to a flat torch array.
if self.samplerate >= 1.0:
self._add_every(incoming)
return
# If we are sampling, then subsample a large chunk at a time.
self._scan_extremes(incoming)
chunksize = int(math.ceil(self.buffersize / self.samplerate))
for index in range(0, len(incoming), chunksize):
batch = incoming[index:index+chunksize]
sample = sample_portion(batch, self.samplerate)
if len(sample):
self._add_every(sample)
def _add_every(self, incoming):
supplied = len(incoming)
index = 0
while index < supplied:
ff = self.firstfree[0]
available = self.data[0].shape[1] - ff
if available == 0:
if not self._shift():
# If we shifted by subsampling, then subsample.
incoming = incoming[index:]
if self.samplerate >= 0.5:
# First time sampling - the data source is very large.
self._scan_extremes(incoming)
incoming = sample_portion(incoming, self.samplerate)
index = 0
supplied = len(incoming)
ff = self.firstfree[0]
available = self.data[0].shape[1] - ff
copycount = min(available, supplied - index)
self.data[0][:,ff:ff + copycount] = torch.t(
incoming[index:index + copycount,:])
self.firstfree[0] += copycount
index += copycount
def _shift(self):
index = 0
# If remaining space at the current layer is less than half prev
# buffer size (rounding up), then we need to shift it up to ensure
# enough space for future shifting.
while self.data[index].shape[1] - self.firstfree[index] < (
-(-self.data[index-1].shape[1] // 2) if index else 1):
if index + 1 >= len(self.data):
return self._expand()
data = self.data[index][:,0:self.firstfree[index]]
data = data.sort()[0]
if index == 0 and self.samplerate >= 1.0:
self._update_extremes(data[:,0], data[:,-1])
offset = self._randbit()
position = self.firstfree[index + 1]
subset = data[:,offset::2]
self.data[index + 1][:,position:position + subset.shape[1]] = subset
self.firstfree[index] = 0
self.firstfree[index + 1] += subset.shape[1]
index += 1
return True
def _scan_extremes(self, incoming):
# When sampling, we need to scan every item still to get extremes
self._update_extremes(
torch.min(incoming, dim=0)[0],
torch.max(incoming, dim=0)[0])
def _update_extremes(self, minr, maxr):
self.extremes[:,0] = torch.min(
torch.stack([self.extremes[:,0], minr]), dim=0)[0]
self.extremes[:,-1] = torch.max(
torch.stack([self.extremes[:,-1], maxr]), dim=0)[0]
def _randbit(self):
self.currentbit += 1
if self.currentbit >= len(self.randbits):
self.randbits.random_(to=2)
self.currentbit = 0
return self.randbits[self.currentbit]
def state_dict(self):
return dict(
constructor=self.__module__ + '.' +
self.__class__.__name__ + '()',
resolution=self.resolution,
depth=self.depth,
buffersize=self.buffersize,
samplerate=self.samplerate,
data=[d.cpu().numpy()[:,:f].T
for d, f in zip(self.data, self.firstfree)],
sizes=[d.shape[1] for d in self.data],
extremes=self.extremes.cpu().numpy(),
size=self.size)
def set_state_dict(self, dic):
self.resolution = int(dic['resolution'])
self.randbits = torch.ByteTensor(self.resolution)
self.currentbit = len(self.randbits) - 1
self.depth = int(dic['depth'])
self.buffersize = int(dic['buffersize'])
self.samplerate = float(dic['samplerate'])
firstfree = []
buffers = []
for d, s in zip(dic['data'], dic['sizes']):
firstfree.append(d.shape[0])
buf = numpy.zeros((d.shape[1], s), dtype=d.dtype)
buf[:,:d.shape[0]] = d.T
buffers.append(torch.from_numpy(buf))
self.firstfree = firstfree
self.data = buffers
self.extremes = torch.from_numpy((dic['extremes']))
self.size = int(dic['size'])
self.dtype = self.extremes.dtype
self.device = self.extremes.device
def minmax(self):
if self.firstfree[0]:
self._scan_extremes(self.data[0][:,:self.firstfree[0]].t())
return self.extremes.clone()
def median(self):
return self.quantiles([0.5])[:,0]
def mean(self):
return self.integrate(lambda x: x) / self.size
def variance(self):
mean = self.mean()[:,None]
return self.integrate(lambda x: (x - mean).pow(2)) / (self.size - 1)
def stdev(self):
return self.variance().sqrt()
def _expand(self):
cap = self._next_capacity()
if cap > 0:
# First, make a new layer of the proper capacity.
self.data.insert(0, torch.zeros(self.depth, cap,
dtype=self.dtype, device=self.device))
self.firstfree.insert(0, 0)
else:
# Unless we're so big we are just subsampling.
assert self.firstfree[0] == 0
self.samplerate *= 0.5
for index in range(1, len(self.data)):
# Scan for existing data that needs to be moved down a level.
amount = self.firstfree[index]
if amount == 0:
continue
position = self.firstfree[index-1]
# Move data down if it would leave enough empty space there
# This is the key invariant: enough empty space to fit half
# of the previous level's buffer size (rounding up)
if self.data[index-1].shape[1] - (amount + position) >= (
-(-self.data[index-2].shape[1] // 2) if (index-1) else 1):
self.data[index-1][:,position:position + amount] = (
self.data[index][:,:amount])
self.firstfree[index-1] += amount
self.firstfree[index] = 0
else:
# Scrunch the data if it would not.
data = self.data[index][:,:amount]
data = data.sort()[0]
if index == 1:
self._update_extremes(data[:,0], data[:,-1])
offset = self._randbit()
scrunched = data[:,offset::2]
self.data[index][:,:scrunched.shape[1]] = scrunched
self.firstfree[index] = scrunched.shape[1]
return cap > 0
def _next_capacity(self):
cap = int(math.ceil(self.resolution * (0.67 ** len(self.data))))
if cap < 2:
return 0
# Round up to the nearest multiple of 8 for better GPU alignment.
cap = -8 * (-cap // 8)
return max(self.buffersize, cap)
def _weighted_summary(self, sort=True):
if self.firstfree[0]:
self._scan_extremes(self.data[0][:,:self.firstfree[0]].t())
size = sum(self.firstfree) + 2
weights = torch.FloatTensor(size) # Floating point
summary = torch.zeros(self.depth, size,
dtype=self.dtype, device=self.device)
weights[0:2] = 0
summary[:,0:2] = self.extremes
index = 2
for level, ff in enumerate(self.firstfree):
if ff == 0:
continue
summary[:,index:index + ff] = self.data[level][:,:ff]
weights[index:index + ff] = 2.0 ** level
index += ff
assert index == summary.shape[1]
if sort:
summary, order = torch.sort(summary, dim=-1)
weights = weights[order.view(-1).cpu()].view(order.shape)
return (summary, weights)
def quantiles(self, quantiles, old_style=False):
if self.size == 0:
return torch.full((self.depth, len(quantiles)), torch.nan)
summary, weights = self._weighted_summary()
cumweights = torch.cumsum(weights, dim=-1) - weights / 2
if old_style:
# To be convenient with torch.percentile
cumweights -= cumweights[:,0:1].clone()
cumweights /= cumweights[:,-1:].clone()
else:
cumweights /= torch.sum(weights, dim=-1, keepdim=True)
result = torch.zeros(self.depth, len(quantiles),
dtype=self.dtype, device=self.device)
# numpy is needed for interpolation
if not hasattr(quantiles, 'cpu'):
quantiles = torch.Tensor(quantiles)
nq = quantiles.cpu().numpy()
ncw = cumweights.cpu().numpy()
nsm = summary.cpu().numpy()
for d in range(self.depth):
result[d] = torch.tensor(numpy.interp(nq, ncw[d], nsm[d]),
dtype=self.dtype, device=self.device)
return result
def integrate(self, fun):
result = None
for level, ff in enumerate(self.firstfree):
if ff == 0:
continue
term = torch.sum(
fun(self.data[level][:,:ff]) * (2.0 ** level),
dim=-1)
if result is None:
result = term
else:
result += term
if result is not None:
result /= self.samplerate
return result
def percentiles(self, percentiles):
return self.quantiles(percentiles, old_style=True)
def readout(self, count=1001, old_style=True):
return self.quantiles(
torch.linspace(0.0, 1.0, count), old_style=old_style)
def normalize(self, data):
'''
Given input data as taken from the training distirbution,
normalizes every channel to reflect quantile values,
uniformly distributed, within [0, 1].
'''
assert self.size > 0
assert data.shape[0] == self.depth
summary, weights = self._weighted_summary()
cumweights = torch.cumsum(weights, dim=-1) - weights / 2
cumweights /= torch.sum(weights, dim=-1, keepdim=True)
result = torch.zeros_like(data).float()
# numpy is needed for interpolation
ndata = data.cpu().numpy().reshape((data.shape[0], -1))
ncw = cumweights.cpu().numpy()
nsm = summary.cpu().numpy()
for d in range(self.depth):
normed = torch.tensor(numpy.interp(ndata[d], nsm[d], ncw[d]),
dtype=torch.float, device=data.device).clamp_(0.0, 1.0)
if len(data.shape) > 1:
normed = normed.view(*(data.shape[1:]))
result[d] = normed
return result
class RunningConditionalQuantile:
'''
Equivalent to a map from conditions (any python hashable type)
to RunningQuantiles. The reason for the type is to allow limited
GPU memory to be exploited while counting quantile stats on many
different conditions, a few of which are common and which benefit
from GPU, but most of which are rare and would not all fit into
GPU RAM.
To move a set of conditions to a device, use rcq.to_(device, conds).
Then in the future, move the tallied data to the device before
calling rcq.add, that is, rcq.add(cond, data.to(device)).
To allow the caller to decide which conditions to allow to use GPU,
rcq.most_common_conditions(n) returns a list of the n most commonly
added conditions so far.
'''
def __init__(self, resolution=6 * 1024, buffersize=None, seed=None,
state=None):
self.first_rq = None
self.call_stats = defaultdict(int)
self.running_quantiles = {}
if state is not None:
self.set_state_dict(state)
return
self.rq_args = dict(resolution=resolution, buffersize=buffersize,
seed=seed)
def add(self, condition, incoming):
if condition not in self.running_quantiles:
self.running_quantiles[condition] = RunningQuantile(**self.rq_args)
if self.first_rq is None:
self.first_rq = self.running_quantiles[condition]
self.call_stats[condition] += 1
rq = self.running_quantiles[condition]
# For performance reasons, the caller can move some conditions to
# the CPU if they are not among the most common conditions.
if rq.device is not None and (rq.device != incoming.device):
rq.to_(incoming.device)
self.running_quantiles[condition].add(incoming)
def most_common_conditions(self, n):
return sorted(self.call_stats.keys(),
key=lambda c: -self.call_stats[c])[:n]
def collected_add(self, conditions, incoming):
for c in conditions:
self.add(c, incoming)
def conditional(self, c):
return self.running_quantiles[c]
def collected_quantiles(self, conditions, quantiles, old_style=False):
result = torch.zeros(
size=(len(conditions), self.first_rq.depth, len(quantiles)),
dtype=self.first_rq.dtype,
device=self.first_rq.device)
for i, c in enumerate(conditions):
if c in self.running_quantiles:
result[i] = self.running_quantiles[c].quantiles(
quantiles, old_style)
return result
def collected_normalize(self, conditions, values):
result = torch.zeros(
size=(len(conditions), values.shape[0], values.shape[1]),
dtype=torch.float,
device=self.first_rq.device)
for i, c in enumerate(conditions):
if c in self.running_quantiles:
result[i] = self.running_quantiles[c].normalize(values)
return result
def to_(self, device, conditions=None):
if conditions is None:
conditions = self.running_quantiles.keys()
for cond in conditions:
if cond in self.running_quantiles:
self.running_quantiles[cond].to_(device)
def state_dict(self):
conditions = sorted(self.running_quantiles.keys())
result = dict(
constructor=self.__module__ + '.' +
self.__class__.__name__ + '()',
rq_args=self.rq_args,
conditions=conditions)
for i, c in enumerate(conditions):
result.update({
'%d.%s' % (i, k): v
for k, v in self.running_quantiles[c].state_dict().items()})
return result
def set_state_dict(self, dic):
self.rq_args = dic['rq_args'].item()
conditions = list(dic['conditions'])
subdicts = defaultdict(dict)
for k, v in dic.items():
if '.' in k:
p, s = k.split('.', 1)
subdicts[p][s] = v
self.running_quantiles = {
c: RunningQuantile(state=subdicts[str(i)])
for i, c in enumerate(conditions)}
if conditions:
self.first_rq = self.running_quantiles[conditions[0]]
# example usage:
# levels = rqc.conditional(()).quantiles(1 - fracs)
# denoms = 1 - rqc.collected_normalize(cats, levels)
# isects = 1 - rqc.collected_normalize(labels, levels)
# unions = fracs + denoms[cats] - isects
# iou = isects / unions
class RunningCrossCovariance:
'''
Running computation. Use this when an off-diagonal block of the
covariance matrix is needed (e.g., when the whole covariance matrix
does not fit in the GPU).
Chan-style numerically stable update of mean and full covariance matrix.
Chan, Golub. LeVeque. 1983. http://www.jstor.org/stable/2683386
'''
def __init__(self, state=None):
if state is not None:
self.set_state_dict(state)
return
self.count = 0
self._mean = None
self.cmom2 = None
self.v_cmom2 = None
def add(self, a, b):
if len(a.shape) == 1:
a = a[None, :]
b = b[None, :]
assert(a.shape[0] == b.shape[0])
if len(a.shape) > 2:
a, b = [d.view(d.shape[0], d.shape[1], -1).permute(0, 2, 1
).contiguous().view(-1, d.shape[1]) for d in [a, b]]
batch_count = a.shape[0]
batch_mean = [d.sum(0) / batch_count for d in [a, b]]
centered = [d - bm for d, bm in zip([a, b], batch_mean)]
# If more than 10 billion operations, divide into batches.
sub_batch = -(-(10 << 30) // (a.shape[1] * b.shape[1]))
# Initial batch.
if self._mean is None:
self.count = batch_count
self._mean = batch_mean
self.v_cmom2 = [c.pow(2).sum(0) for c in centered]
self.cmom2 = a.new(a.shape[1], b.shape[1]).zero_()
progress_addbmm(self.cmom2, centered[0][:,:,None],
centered[1][:,None,:], sub_batch)
return
# Update a batch using Chan-style update for numerical stability.
oldcount = self.count
self.count += batch_count
new_frac = float(batch_count) / self.count
# Update the mean according to the batch deviation from the old mean.
delta = [bm.sub_(m).mul_(new_frac)
for bm, m in zip(batch_mean, self._mean)]
for m, d in zip(self._mean, delta):
m.add_(d)
# Update the cross-covariance using the batch deviation
progress_addbmm(self.cmom2, centered[0][:,:,None],
centered[1][:,None,:], sub_batch)
self.cmom2.addmm_(alpha=new_frac * oldcount,
mat1=delta[0][:,None], mat2=delta[1][None,:])
# Update the variance using the batch deviation
for c, vc2, d in zip(centered, self.v_cmom2, delta):
vc2.add_(c.pow(2).sum(0))
vc2.add_(d.pow_(2).mul_(new_frac * oldcount))
def mean(self):
return self._mean
def variance(self):
return [vc2 / (self.count - 1) for vc2 in self.v_cmom2]
def stdev(self):
return [v.sqrt() for v in self.variance()]
def covariance(self):
return self.cmom2 / (self.count - 1)
def correlation(self):
covariance = self.covariance()
rstdev = [s.reciprocal() for s in self.stdev()]
cor = rstdev[0][:,None] * covariance * rstdev[1][None,:]
# Remove NaNs
cor[torch.isnan(cor)] = 0
return cor
def to_(self, device):
self._mean = [m.to(device) for m in self._mean]
self.v_cmom2 = [vcs.to(device) for vcs in self.v_cmom2]
self.cmom2 = self.cmom2.to(device)
def state_dict(self):
return dict(
constructor=self.__module__ + '.' +
self.__class__.__name__ + '()',
count=self.count,
mean_a=self._mean[0].cpu().numpy(),
mean_b=self._mean[1].cpu().numpy(),
cmom2_a=self.v_cmom2[0].cpu().numpy(),
cmom2_b=self.v_cmom2[1].cpu().numpy(),
cmom2=self.cmom2.cpu().numpy())
def set_state_dict(self, dic):
self.count = dic['count'].item()
self._mean = [torch.from_numpy(dic[k]) for k in ['mean_a', 'mean_b']]
self.v_cmom2 = [torch.from_numpy(dic[k])
for k in ['cmom2_a', 'cmom2_b']]
self.cmom2 = torch.from_numpy(dic['cmom2'])
def progress_addbmm(accum, x, y, batch_size):
'''
Break up very large adbmm operations into batches so progress can be seen.
'''
from .progress import default_progress
if x.shape[0] <= batch_size:
return accum.addbmm_(x, y)
progress = default_progress(None)
for i in progress(range(0, x.shape[0], batch_size), desc='bmm'):
accum.addbmm_(x[i:i+batch_size], y[i:i+batch_size])
return accum
def sample_portion(vec, p=0.5):
bits = torch.bernoulli(torch.zeros(vec.shape[0], dtype=torch.uint8,
device=vec.device), p)
return vec[bits]
if __name__ == '__main__':
import warnings
warnings.filterwarnings("error")
import time
import argparse
parser = argparse.ArgumentParser(
description='Test things out')
parser.add_argument('--mode', default='cpu', help='cpu or cuda')
parser.add_argument('--test_size', type=int, default=1000000)
args = parser.parse_args()
# An adverarial case: we keep finding more numbers in the middle
# as the stream goes on.
amount = args.test_size
quantiles = 1000
data = numpy.arange(float(amount))
data[1::2] = data[-1::-2] + (len(data) - 1)
data /= 2
depth = 50
test_cuda = torch.cuda.is_available()
alldata = data[:,None] + (numpy.arange(depth) * amount)[None, :]
actual_sum = torch.FloatTensor(numpy.sum(alldata * alldata, axis=0))
amt = amount // depth
for r in range(depth):
numpy.random.shuffle(alldata[r*amt:r*amt+amt,r])
if args.mode == 'cuda':
alldata = torch.cuda.FloatTensor(alldata)
dtype = torch.float
device = torch.device('cuda')
else:
alldata = torch.FloatTensor(alldata)
dtype = torch.float
device = None
starttime = time.time()
qc = RunningQuantile(resolution=6 * 1024)
qc.add(alldata)
# Test state dict
saved = qc.state_dict()
# numpy.savez('foo.npz', **saved)
# saved = numpy.load('foo.npz')
qc = RunningQuantile(state=saved)
assert not qc.device.type == 'cuda'
qc.add(alldata)
actual_sum *= 2
ro = qc.readout(1001).cpu()
endtime = time.time()
gt = torch.linspace(0, amount, quantiles+1)[None,:] + (
torch.arange(qc.depth, dtype=torch.float) * amount)[:,None]
maxreldev = torch.max(torch.abs(ro - gt) / amount) * quantiles
print("Maximum relative deviation among %d perentiles: %f" % (
quantiles, maxreldev))
minerr = torch.max(torch.abs(qc.minmax().cpu()[:,0] -
torch.arange(qc.depth, dtype=torch.float) * amount))
maxerr = torch.max(torch.abs((qc.minmax().cpu()[:, -1] + 1) -
(torch.arange(qc.depth, dtype=torch.float) + 1) * amount))
print("Minmax error %f, %f" % (minerr, maxerr))
interr = torch.max(torch.abs(qc.integrate(lambda x: x * x).cpu()
- actual_sum) / actual_sum)
print("Integral error: %f" % interr)
medianerr = torch.max(torch.abs(qc.median() -
alldata.median(0)[0]) / alldata.median(0)[0]).cpu()
print("Median error: %f" % interr)
meanerr = torch.max(
torch.abs(qc.mean() - alldata.mean(0)) / alldata.mean(0)).cpu()
print("Mean error: %f" % meanerr)
varerr = torch.max(
torch.abs(qc.variance() - alldata.var(0)) / alldata.var(0)).cpu()
print("Variance error: %f" % varerr)
counterr = ((qc.integrate(lambda x: torch.ones(x.shape[-1]).cpu())
- qc.size) / (0.0 + qc.size)).item()
print("Count error: %f" % counterr)
print("Time %f" % (endtime - starttime))
# Algorithm is randomized, so some of these will fail with low probability.
assert maxreldev < 1.0
assert minerr == 0.0
assert maxerr == 0.0
assert interr < 0.01
assert abs(counterr) < 0.001
print("OK")
|