Spaces:
Runtime error
Runtime error
File size: 7,487 Bytes
337965d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.
import tkinter as tk
import numpy as np
import time
from contextlib import contextmanager
import pycuda.driver
from pycuda.gl import graphics_map_flags
from glumpy import gloo, gl
from pyopengltk import OpenGLFrame
import torch
from torch.autograd import Variable
# TkInter widget that can draw torch tensors directly from GPU memory
@contextmanager
def cuda_activate(img):
"""Context manager simplifying use of pycuda.gl.RegisteredImage"""
mapping = img.map()
yield mapping.array(0,0)
mapping.unmap()
def create_shared_texture(w, h, c=4,
map_flags=graphics_map_flags.WRITE_DISCARD,
dtype=np.uint8):
"""Create and return a Texture2D with gloo and pycuda views."""
tex = np.zeros((h,w,c), dtype).view(gloo.Texture2D)
tex.activate() # force gloo to create on GPU
tex.deactivate()
cuda_buffer = pycuda.gl.RegisteredImage(
int(tex.handle), tex.target, map_flags)
return tex, cuda_buffer
# Shape batch as square if possible
def get_grid_dims(B):
S = int(B**0.5 + 0.5)
while B % S != 0:
S -= 1
return (B // S, S)
def create_gl_texture(tensor_shape):
if len(tensor_shape) != 4:
raise RuntimeError('Please provide a tensor of shape NCHW')
N, C, H, W = tensor_shape
cols, rows = get_grid_dims(N)
tex, cuda_buffer = create_shared_texture(W*cols, H*rows, 4)
return tex, cuda_buffer
# Create window with OpenGL context
class TorchImageView(OpenGLFrame):
def __init__(self, root = None, show_fps=True, **kwargs):
self.root = root or tk.Tk()
self.width = kwargs.get('width', 512)
self.height = kwargs.get('height', 512)
self.show_fps = show_fps
self.pycuda_initialized = False
self.animate = 0 # disable internal main loop
OpenGLFrame.__init__(self, root, **kwargs)
# Called by pyopengltk.BaseOpenGLFrame
# when the frame goes onto the screen
def initgl(self):
if not self.pycuda_initialized:
self.setup_gl(self.width, self.height)
self.pycuda_initialized = True
"""Initalize gl states when the frame is created"""
gl.glViewport(0, 0, self.width, self.height)
gl.glClearColor(0.0, 0.0, 0.0, 0.0)
self.dt_history = [1000/60]
self.t0 = time.time()
self.t_last = self.t0
self.nframes = 0
def setup_gl(self, width, height):
# setup pycuda and torch
import pycuda.gl.autoinit
import pycuda.gl
assert torch.cuda.is_available(), "PyTorch: CUDA is not available"
print('Using GPU {}'.format(torch.cuda.current_device()))
# Create tensor to be shared between GL and CUDA
# Always overwritten so no sharing is necessary
dummy = torch.cuda.FloatTensor((1))
dummy.uniform_()
dummy = Variable(dummy)
# Create a buffer with pycuda and gloo views, using tensor created above
self.tex, self.cuda_buffer = create_gl_texture((1, 3, width, height))
# create a shader to program to draw to the screen
vertex = """
uniform float scale;
attribute vec2 position;
attribute vec2 texcoord;
varying vec2 v_texcoord;
void main()
{
v_texcoord = texcoord;
gl_Position = vec4(scale*position, 0.0, 1.0);
} """
fragment = """
uniform sampler2D tex;
varying vec2 v_texcoord;
void main()
{
gl_FragColor = texture2D(tex, v_texcoord);
} """
# Build the program and corresponding buffers (with 4 vertices)
self.screen = gloo.Program(vertex, fragment, count=4)
# NDC coordinates: Texcoords: Vertex order,
# (-1, +1) (+1, +1) (0,0) (1,0) triangle strip:
# +-------+ +----+ 1----3
# | NDC | | | | / |
# | SPACE | | | | / |
# +-------+ +----+ 2----4
# (-1, -1) (+1, -1) (0,1) (1,1)
# Upload data to GPU
self.screen['position'] = [(-1,+1), (-1,-1), (+1,+1), (+1,-1)]
self.screen['texcoord'] = [(0,0), (0,1), (1,0), (1,1)]
self.screen['scale'] = 1.0
self.screen['tex'] = self.tex
# Don't call directly, use update() instead
def redraw(self):
t_now = time.time()
dt = t_now - self.t_last
self.t_last = t_now
self.dt_history = ([dt] + self.dt_history)[:50]
dt_mean = sum(self.dt_history) / len(self.dt_history)
if self.show_fps and self.nframes % 60 == 0:
self.master.title('FPS: {:.0f}'.format(1 / dt_mean))
def draw(self, img):
assert len(img.shape) == 4, "Please provide an NCHW image tensor"
assert img.device.type == "cuda", "Please provide a CUDA tensor"
if img.dtype.is_floating_point:
img = (255*img).byte()
# Tile images
N, C, H, W = img.shape
if N > 1:
cols, rows = get_grid_dims(N)
img = img.reshape(cols, rows, C, H, W)
img = img.permute(2, 1, 3, 0, 4) # [C, rows, H, cols, W]
img = img.reshape(1, C, rows*H, cols*W)
tensor = img.squeeze().permute(1, 2, 0).data # CHW => HWC
if C == 3:
tensor = torch.cat((tensor, tensor[:,:,0:1]),2) # add the alpha channel
tensor[:,:,3] = 1 # set alpha
tensor = tensor.contiguous()
tex_h, tex_w, _ = self.tex.shape
tensor_h, tensor_w, _ = tensor.shape
if (tex_h, tex_w) != (tensor_h, tensor_w):
print(f'Resizing texture to {tensor_w}*{tensor_h}')
self.tex, self.cuda_buffer = create_gl_texture((N, C, H, W)) # original shape
self.screen['tex'] = self.tex
# copy from torch into buffer
assert self.tex.nbytes == tensor.numel()*tensor.element_size(), "Tensor and texture shape mismatch!"
with cuda_activate(self.cuda_buffer) as ary:
cpy = pycuda.driver.Memcpy2D()
cpy.set_src_device(tensor.data_ptr())
cpy.set_dst_array(ary)
cpy.width_in_bytes = cpy.src_pitch = cpy.dst_pitch = self.tex.nbytes//tensor_h
cpy.height = tensor_h
cpy(aligned=False)
torch.cuda.synchronize()
# draw to screen
self.screen.draw(gl.GL_TRIANGLE_STRIP)
def update(self):
self.update_idletasks()
self.tkMakeCurrent()
self.redraw()
self.tkSwapBuffers()
# USAGE:
# root = tk.Tk()
# iv = TorchImageView(root, width=512, height=512)
# iv.pack(fill='both', expand=True)
# while True:
# iv.draw(nchw_tensor)
# root.update()
# iv.update() |