Spaces:
Runtime error
Runtime error
/* | |
* Copyright (C) 2001-2011 Michael Niedermayer <[email protected]> | |
* | |
* This file is part of FFmpeg. | |
* | |
* FFmpeg is free software; you can redistribute it and/or | |
* modify it under the terms of the GNU Lesser General Public | |
* License as published by the Free Software Foundation; either | |
* version 2.1 of the License, or (at your option) any later version. | |
* | |
* FFmpeg is distributed in the hope that it will be useful, | |
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
* Lesser General Public License for more details. | |
* | |
* You should have received a copy of the GNU Lesser General Public | |
* License along with FFmpeg; if not, write to the Free Software | |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
*/ | |
struct SwsContext; | |
typedef enum SwsDither { | |
SWS_DITHER_NONE = 0, | |
SWS_DITHER_AUTO, | |
SWS_DITHER_BAYER, | |
SWS_DITHER_ED, | |
SWS_DITHER_A_DITHER, | |
SWS_DITHER_X_DITHER, | |
NB_SWS_DITHER, | |
} SwsDither; | |
typedef enum SwsAlphaBlend { | |
SWS_ALPHA_BLEND_NONE = 0, | |
SWS_ALPHA_BLEND_UNIFORM, | |
SWS_ALPHA_BLEND_CHECKERBOARD, | |
SWS_ALPHA_BLEND_NB, | |
} SwsAlphaBlend; | |
typedef struct Range { | |
unsigned int start; | |
unsigned int len; | |
} Range; | |
typedef struct RangeList { | |
Range *ranges; | |
unsigned int nb_ranges; | |
int ranges_allocated; | |
} RangeList; | |
int ff_range_add(RangeList *r, unsigned int start, unsigned int len); | |
typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[], | |
int srcStride[], int srcSliceY, int srcSliceH, | |
uint8_t *dst[], int dstStride[]); | |
/** | |
* Write one line of horizontally scaled data to planar output | |
* without any additional vertical scaling (or point-scaling). | |
* | |
* @param src scaled source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param dest pointer to the output plane. For >8-bit | |
* output, this is in uint16_t | |
* @param dstW width of destination in pixels | |
* @param dither ordered dither array of type int16_t and size 8 | |
* @param offset Dither offset | |
*/ | |
typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, | |
const uint8_t *dither, int offset); | |
/** | |
* Write one line of horizontally scaled data to planar output | |
* with multi-point vertical scaling between input pixels. | |
* | |
* @param filter vertical luma/alpha scaling coefficients, 12 bits [0,4096] | |
* @param src scaled luma (Y) or alpha (A) source data, 15 bits for | |
* 8-10-bit output, 19 bits for 16-bit output (in int32_t) | |
* @param filterSize number of vertical input lines to scale | |
* @param dest pointer to output plane. For >8-bit | |
* output, this is in uint16_t | |
* @param dstW width of destination pixels | |
* @param offset Dither offset | |
*/ | |
typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize, | |
const int16_t **src, uint8_t *dest, int dstW, | |
const uint8_t *dither, int offset); | |
/** | |
* Write one line of horizontally scaled chroma to interleaved output | |
* with multi-point vertical scaling between input pixels. | |
* | |
* @param dstFormat destination pixel format | |
* @param chrDither ordered dither array of type uint8_t and size 8 | |
* @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096] | |
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit | |
* output, 19 bits for 16-bit output (in int32_t) | |
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit | |
* output, 19 bits for 16-bit output (in int32_t) | |
* @param chrFilterSize number of vertical chroma input lines to scale | |
* @param dest pointer to the output plane. For >8-bit | |
* output, this is in uint16_t | |
* @param dstW width of chroma planes | |
*/ | |
typedef void (*yuv2interleavedX_fn)(enum AVPixelFormat dstFormat, | |
const uint8_t *chrDither, | |
const int16_t *chrFilter, | |
int chrFilterSize, | |
const int16_t **chrUSrc, | |
const int16_t **chrVSrc, | |
uint8_t *dest, int dstW); | |
/** | |
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB | |
* output without any additional vertical scaling (or point-scaling). Note | |
* that this function may do chroma scaling, see the "uvalpha" argument. | |
* | |
* @param c SWS scaling context | |
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param dest pointer to the output plane. For 16-bit output, this is | |
* uint16_t | |
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels | |
* to write into dest[] | |
* @param uvalpha chroma scaling coefficient for the second line of chroma | |
* pixels, either 2048 or 0. If 0, one chroma input is used | |
* for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag | |
* is set, it generates 1 output pixel). If 2048, two chroma | |
* input pixels should be averaged for 2 output pixels (this | |
* only happens if SWS_FLAG_FULL_CHR_INT is not set) | |
* @param y vertical line number for this output. This does not need | |
* to be used to calculate the offset in the destination, | |
* but can be used to generate comfort noise using dithering | |
* for some output formats. | |
*/ | |
typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc, | |
const int16_t *chrUSrc[2], | |
const int16_t *chrVSrc[2], | |
const int16_t *alpSrc, uint8_t *dest, | |
int dstW, int uvalpha, int y); | |
/** | |
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB | |
* output by doing bilinear scaling between two input lines. | |
* | |
* @param c SWS scaling context | |
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param dest pointer to the output plane. For 16-bit output, this is | |
* uint16_t | |
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels | |
* to write into dest[] | |
* @param yalpha luma/alpha scaling coefficients for the second input line. | |
* The first line's coefficients can be calculated by using | |
* 4096 - yalpha | |
* @param uvalpha chroma scaling coefficient for the second input line. The | |
* first line's coefficients can be calculated by using | |
* 4096 - uvalpha | |
* @param y vertical line number for this output. This does not need | |
* to be used to calculate the offset in the destination, | |
* but can be used to generate comfort noise using dithering | |
* for some output formats. | |
*/ | |
typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2], | |
const int16_t *chrUSrc[2], | |
const int16_t *chrVSrc[2], | |
const int16_t *alpSrc[2], | |
uint8_t *dest, | |
int dstW, int yalpha, int uvalpha, int y); | |
/** | |
* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB | |
* output by doing multi-point vertical scaling between input pixels. | |
* | |
* @param c SWS scaling context | |
* @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096] | |
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param lumFilterSize number of vertical luma/alpha input lines to scale | |
* @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096] | |
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param chrFilterSize number of vertical chroma input lines to scale | |
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param dest pointer to the output plane. For 16-bit output, this is | |
* uint16_t | |
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels | |
* to write into dest[] | |
* @param y vertical line number for this output. This does not need | |
* to be used to calculate the offset in the destination, | |
* but can be used to generate comfort noise using dithering | |
* or some output formats. | |
*/ | |
typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter, | |
const int16_t **lumSrc, int lumFilterSize, | |
const int16_t *chrFilter, | |
const int16_t **chrUSrc, | |
const int16_t **chrVSrc, int chrFilterSize, | |
const int16_t **alpSrc, uint8_t *dest, | |
int dstW, int y); | |
/** | |
* Write one line of horizontally scaled Y/U/V/A to YUV/RGB | |
* output by doing multi-point vertical scaling between input pixels. | |
* | |
* @param c SWS scaling context | |
* @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096] | |
* @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param lumFilterSize number of vertical luma/alpha input lines to scale | |
* @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096] | |
* @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param chrFilterSize number of vertical chroma input lines to scale | |
* @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output, | |
* 19 bits for 16-bit output (in int32_t) | |
* @param dest pointer to the output planes. For 16-bit output, this is | |
* uint16_t | |
* @param dstW width of lumSrc and alpSrc in pixels, number of pixels | |
* to write into dest[] | |
* @param y vertical line number for this output. This does not need | |
* to be used to calculate the offset in the destination, | |
* but can be used to generate comfort noise using dithering | |
* or some output formats. | |
*/ | |
typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter, | |
const int16_t **lumSrc, int lumFilterSize, | |
const int16_t *chrFilter, | |
const int16_t **chrUSrc, | |
const int16_t **chrVSrc, int chrFilterSize, | |
const int16_t **alpSrc, uint8_t **dest, | |
int dstW, int y); | |
struct SwsSlice; | |
struct SwsFilterDescriptor; | |
/* This struct should be aligned on at least a 32-byte boundary. */ | |
typedef struct SwsContext { | |
/** | |
* info on struct for av_log | |
*/ | |
const AVClass *av_class; | |
struct SwsContext *parent; | |
AVSliceThread *slicethread; | |
struct SwsContext **slice_ctx; | |
int *slice_err; | |
int nb_slice_ctx; | |
// values passed to current sws_receive_slice() call | |
int dst_slice_start; | |
int dst_slice_height; | |
/** | |
* Note that src, dst, srcStride, dstStride will be copied in the | |
* sws_scale() wrapper so they can be freely modified here. | |
*/ | |
SwsFunc convert_unscaled; | |
int srcW; ///< Width of source luma/alpha planes. | |
int srcH; ///< Height of source luma/alpha planes. | |
int dstH; ///< Height of destination luma/alpha planes. | |
int chrSrcW; ///< Width of source chroma planes. | |
int chrSrcH; ///< Height of source chroma planes. | |
int chrDstW; ///< Width of destination chroma planes. | |
int chrDstH; ///< Height of destination chroma planes. | |
int lumXInc, chrXInc; | |
int lumYInc, chrYInc; | |
enum AVPixelFormat dstFormat; ///< Destination pixel format. | |
enum AVPixelFormat srcFormat; ///< Source pixel format. | |
int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format. | |
int srcFormatBpp; ///< Number of bits per pixel of the source pixel format. | |
int dstBpc, srcBpc; | |
int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image. | |
int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image. | |
int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image. | |
int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image. | |
int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user. | |
int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top). | |
int nb_threads; ///< Number of threads used for scaling | |
double param[2]; ///< Input parameters for scaling algorithms that need them. | |
AVFrame *frame_src; | |
AVFrame *frame_dst; | |
RangeList src_ranges; | |
/* The cascaded_* fields allow spliting a scaler task into multiple | |
* sequential steps, this is for example used to limit the maximum | |
* downscaling factor that needs to be supported in one scaler. | |
*/ | |
struct SwsContext *cascaded_context[3]; | |
int cascaded_tmpStride[4]; | |
uint8_t *cascaded_tmp[4]; | |
int cascaded1_tmpStride[4]; | |
uint8_t *cascaded1_tmp[4]; | |
int cascaded_mainindex; | |
double gamma_value; | |
int gamma_flag; | |
int is_internal_gamma; | |
uint16_t *gamma; | |
uint16_t *inv_gamma; | |
int numDesc; | |
int descIndex[2]; | |
int numSlice; | |
struct SwsSlice *slice; | |
struct SwsFilterDescriptor *desc; | |
uint32_t pal_yuv[256]; | |
uint32_t pal_rgb[256]; | |
float uint2float_lut[256]; | |
/** | |
* @name Scaled horizontal lines ring buffer. | |
* The horizontal scaler keeps just enough scaled lines in a ring buffer | |
* so they may be passed to the vertical scaler. The pointers to the | |
* allocated buffers for each line are duplicated in sequence in the ring | |
* buffer to simplify indexing and avoid wrapping around between lines | |
* inside the vertical scaler code. The wrapping is done before the | |
* vertical scaler is called. | |
*/ | |
//@{ | |
int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer. | |
int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer. | |
//@} | |
uint8_t *formatConvBuffer; | |
int needAlpha; | |
/** | |
* @name Horizontal and vertical filters. | |
* To better understand the following fields, here is a pseudo-code of | |
* their usage in filtering a horizontal line: | |
* @code | |
* for (i = 0; i < width; i++) { | |
* dst[i] = 0; | |
* for (j = 0; j < filterSize; j++) | |
* dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ]; | |
* dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point. | |
* } | |
* @endcode | |
*/ | |
//@{ | |
int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes. | |
int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes. | |
int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes. | |
int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes. | |
int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes. | |
int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes. | |
int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes. | |
int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes. | |
int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels. | |
int hChrFilterSize; ///< Horizontal filter size for chroma pixels. | |
int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels. | |
int vChrFilterSize; ///< Vertical filter size for chroma pixels. | |
//@} | |
int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes. | |
int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes. | |
uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes. | |
uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes. | |
int canMMXEXTBeUsed; | |
int warned_unuseable_bilinear; | |
int dstY; ///< Last destination vertical line output from last slice. | |
int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc... | |
void *yuvTable; // pointer to the yuv->rgb table start so it can be freed() | |
// alignment ensures the offset can be added in a single | |
// instruction on e.g. ARM | |
DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM]; | |
uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM]; | |
uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM]; | |
uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM]; | |
DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points | |
int *dither_error[4]; | |
//Colorspace stuff | |
int contrast, brightness, saturation; // for sws_getColorspaceDetails | |
int srcColorspaceTable[4]; | |
int dstColorspaceTable[4]; | |
int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image). | |
int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image). | |
int src0Alpha; | |
int dst0Alpha; | |
int srcXYZ; | |
int dstXYZ; | |
int src_h_chr_pos; | |
int dst_h_chr_pos; | |
int src_v_chr_pos; | |
int dst_v_chr_pos; | |
int yuv2rgb_y_offset; | |
int yuv2rgb_y_coeff; | |
int yuv2rgb_v2r_coeff; | |
int yuv2rgb_v2g_coeff; | |
int yuv2rgb_u2g_coeff; | |
int yuv2rgb_u2b_coeff; | |
DECLARE_ALIGNED(8, uint64_t, redDither); | |
DECLARE_ALIGNED(8, uint64_t, greenDither); | |
DECLARE_ALIGNED(8, uint64_t, blueDither); | |
DECLARE_ALIGNED(8, uint64_t, yCoeff); | |
DECLARE_ALIGNED(8, uint64_t, vrCoeff); | |
DECLARE_ALIGNED(8, uint64_t, ubCoeff); | |
DECLARE_ALIGNED(8, uint64_t, vgCoeff); | |
DECLARE_ALIGNED(8, uint64_t, ugCoeff); | |
DECLARE_ALIGNED(8, uint64_t, yOffset); | |
DECLARE_ALIGNED(8, uint64_t, uOffset); | |
DECLARE_ALIGNED(8, uint64_t, vOffset); | |
int32_t lumMmxFilter[4 * MAX_FILTER_SIZE]; | |
int32_t chrMmxFilter[4 * MAX_FILTER_SIZE]; | |
int dstW; ///< Width of destination luma/alpha planes. | |
DECLARE_ALIGNED(8, uint64_t, esp); | |
DECLARE_ALIGNED(8, uint64_t, vRounder); | |
DECLARE_ALIGNED(8, uint64_t, u_temp); | |
DECLARE_ALIGNED(8, uint64_t, v_temp); | |
DECLARE_ALIGNED(8, uint64_t, y_temp); | |
int32_t alpMmxFilter[4 * MAX_FILTER_SIZE]; | |
// alignment of these values is not necessary, but merely here | |
// to maintain the same offset across x8632 and x86-64. Once we | |
// use proper offset macros in the asm, they can be removed. | |
DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes | |
DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes | |
DECLARE_ALIGNED(8, uint16_t, dither16)[8]; | |
DECLARE_ALIGNED(8, uint32_t, dither32)[8]; | |
const uint8_t *chrDither8, *lumDither8; | |
vector signed short CY; | |
vector signed short CRV; | |
vector signed short CBU; | |
vector signed short CGU; | |
vector signed short CGV; | |
vector signed short OY; | |
vector unsigned short CSHIFT; | |
vector signed short *vYCoeffsBank, *vCCoeffsBank; | |
int use_mmx_vfilter; | |
/* pre defined color-spaces gamma */ | |
int16_t *xyzgamma; | |
int16_t *rgbgamma; | |
int16_t *xyzgammainv; | |
int16_t *rgbgammainv; | |
int16_t xyz2rgb_matrix[3][4]; | |
int16_t rgb2xyz_matrix[3][4]; | |
/* function pointers for swscale() */ | |
yuv2planar1_fn yuv2plane1; | |
yuv2planarX_fn yuv2planeX; | |
yuv2interleavedX_fn yuv2nv12cX; | |
yuv2packed1_fn yuv2packed1; | |
yuv2packed2_fn yuv2packed2; | |
yuv2packedX_fn yuv2packedX; | |
yuv2anyX_fn yuv2anyX; | |
/// Opaque data pointer passed to all input functions. | |
void *input_opaque; | |
/// Unscaled conversion of luma plane to YV12 for horizontal scaler. | |
void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3, | |
int width, uint32_t *pal, void *opq); | |
/// Unscaled conversion of alpha plane to YV12 for horizontal scaler. | |
void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3, | |
int width, uint32_t *pal, void *opq); | |
/// Unscaled conversion of chroma planes to YV12 for horizontal scaler. | |
void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV, | |
const uint8_t *src1, const uint8_t *src2, const uint8_t *src3, | |
int width, uint32_t *pal, void *opq); | |
/** | |
* Functions to read planar input, such as planar RGB, and convert | |
* internally to Y/UV/A. | |
*/ | |
/** @{ */ | |
void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv, | |
void *opq); | |
void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4], | |
int width, int32_t *rgb2yuv, void *opq); | |
void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv, | |
void *opq); | |
/** @} */ | |
/** | |
* Scale one horizontal line of input data using a bilinear filter | |
* to produce one line of output data. Compared to SwsContext->hScale(), | |
* please take note of the following caveats when using these: | |
* - Scaling is done using only 7 bits instead of 14-bit coefficients. | |
* - You can use no more than 5 input pixels to produce 4 output | |
* pixels. Therefore, this filter should not be used for downscaling | |
* by more than ~20% in width (because that equals more than 5/4th | |
* downscaling and thus more than 5 pixels input per 4 pixels output). | |
* - In general, bilinear filters create artifacts during downscaling | |
* (even when <20%), because one output pixel will span more than one | |
* input pixel, and thus some pixels will need edges of both neighbor | |
* pixels to interpolate the output pixel. Since you can use at most | |
* two input pixels per output pixel in bilinear scaling, this is | |
* impossible and thus downscaling by any size will create artifacts. | |
* To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR | |
* in SwsContext->flags. | |
*/ | |
/** @{ */ | |
void (*hyscale_fast)(struct SwsContext *c, | |
int16_t *dst, int dstWidth, | |
const uint8_t *src, int srcW, int xInc); | |
void (*hcscale_fast)(struct SwsContext *c, | |
int16_t *dst1, int16_t *dst2, int dstWidth, | |
const uint8_t *src1, const uint8_t *src2, | |
int srcW, int xInc); | |
/** @} */ | |
/** | |
* Scale one horizontal line of input data using a filter over the input | |
* lines, to produce one (differently sized) line of output data. | |
* | |
* @param dst pointer to destination buffer for horizontally scaled | |
* data. If the number of bits per component of one | |
* destination pixel (SwsContext->dstBpc) is <= 10, data | |
* will be 15 bpc in 16 bits (int16_t) width. Else (i.e. | |
* SwsContext->dstBpc == 16), data will be 19bpc in | |
* 32 bits (int32_t) width. | |
* @param dstW width of destination image | |
* @param src pointer to source data to be scaled. If the number of | |
* bits per component of a source pixel (SwsContext->srcBpc) | |
* is 8, this is 8bpc in 8 bits (uint8_t) width. Else | |
* (i.e. SwsContext->dstBpc > 8), this is native depth | |
* in 16 bits (uint16_t) width. In other words, for 9-bit | |
* YUV input, this is 9bpc, for 10-bit YUV input, this is | |
* 10bpc, and for 16-bit RGB or YUV, this is 16bpc. | |
* @param filter filter coefficients to be used per output pixel for | |
* scaling. This contains 14bpp filtering coefficients. | |
* Guaranteed to contain dstW * filterSize entries. | |
* @param filterPos position of the first input pixel to be used for | |
* each output pixel during scaling. Guaranteed to | |
* contain dstW entries. | |
* @param filterSize the number of input coefficients to be used (and | |
* thus the number of input pixels to be used) for | |
* creating a single output pixel. Is aligned to 4 | |
* (and input coefficients thus padded with zeroes) | |
* to simplify creating SIMD code. | |
*/ | |
/** @{ */ | |
void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW, | |
const uint8_t *src, const int16_t *filter, | |
const int32_t *filterPos, int filterSize); | |
void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW, | |
const uint8_t *src, const int16_t *filter, | |
const int32_t *filterPos, int filterSize); | |
/** @} */ | |
/// Color range conversion function for luma plane if needed. | |
void (*lumConvertRange)(int16_t *dst, int width); | |
/// Color range conversion function for chroma planes if needed. | |
void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width); | |
int needs_hcscale; ///< Set if there are chroma planes to be converted. | |
SwsDither dither; | |
SwsAlphaBlend alphablend; | |
// scratch buffer for converting packed rgb0 sources | |
// filled with a copy of the input frame + fully opaque alpha, | |
// then passed as input to further conversion | |
uint8_t *rgb0_scratch; | |
unsigned int rgb0_scratch_allocated; | |
// scratch buffer for converting XYZ sources | |
// filled with the input converted to rgb48 | |
// then passed as input to further conversion | |
uint8_t *xyz_scratch; | |
unsigned int xyz_scratch_allocated; | |
unsigned int dst_slice_align; | |
atomic_int stride_unaligned_warned; | |
atomic_int data_unaligned_warned; | |
Half2FloatTables *h2f_tables; | |
} SwsContext; | |
//FIXME check init (where 0) | |
SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c); | |
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], | |
int fullRange, int brightness, | |
int contrast, int saturation); | |
void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], | |
int brightness, int contrast, int saturation); | |
void ff_updateMMXDitherTables(SwsContext *c, int dstY); | |
av_cold void ff_sws_init_range_convert(SwsContext *c); | |
SwsFunc ff_yuv2rgb_init_x86(SwsContext *c); | |
SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c); | |
SwsFunc ff_yuv2rgb_init_loongarch(SwsContext *c); | |
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return desc->comp[0].depth == 16; | |
} | |
static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return desc->comp[0].depth == 32; | |
} | |
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return desc->comp[0].depth >= 9 && desc->comp[0].depth <= 14; | |
} | |
static av_always_inline int isBE(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return desc->flags & AV_PIX_FMT_FLAG_BE; | |
} | |
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2; | |
} | |
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt)); | |
} | |
/* | |
* Identity semi-planar YUV formats. Specifically, those are YUV formats | |
* where the second and third components (U & V) are on the same plane. | |
*/ | |
static av_always_inline int isSemiPlanarYUV(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return (isPlanarYUV(pix_fmt) && desc->comp[1].plane == desc->comp[2].plane); | |
} | |
static av_always_inline int isRGB(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return (desc->flags & AV_PIX_FMT_FLAG_RGB); | |
} | |
static av_always_inline int isGray(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return !(desc->flags & AV_PIX_FMT_FLAG_PAL) && | |
!(desc->flags & AV_PIX_FMT_FLAG_HWACCEL) && | |
desc->nb_components <= 2 && | |
pix_fmt != AV_PIX_FMT_MONOBLACK && | |
pix_fmt != AV_PIX_FMT_MONOWHITE; | |
} | |
static av_always_inline int isRGBinInt(enum AVPixelFormat pix_fmt) | |
{ | |
return pix_fmt == AV_PIX_FMT_RGB48BE || | |
pix_fmt == AV_PIX_FMT_RGB48LE || | |
pix_fmt == AV_PIX_FMT_RGB32 || | |
pix_fmt == AV_PIX_FMT_RGB32_1 || | |
pix_fmt == AV_PIX_FMT_RGB24 || | |
pix_fmt == AV_PIX_FMT_RGB565BE || | |
pix_fmt == AV_PIX_FMT_RGB565LE || | |
pix_fmt == AV_PIX_FMT_RGB555BE || | |
pix_fmt == AV_PIX_FMT_RGB555LE || | |
pix_fmt == AV_PIX_FMT_RGB444BE || | |
pix_fmt == AV_PIX_FMT_RGB444LE || | |
pix_fmt == AV_PIX_FMT_RGB8 || | |
pix_fmt == AV_PIX_FMT_RGB4 || | |
pix_fmt == AV_PIX_FMT_RGB4_BYTE || | |
pix_fmt == AV_PIX_FMT_RGBA64BE || | |
pix_fmt == AV_PIX_FMT_RGBA64LE || | |
pix_fmt == AV_PIX_FMT_MONOBLACK || | |
pix_fmt == AV_PIX_FMT_MONOWHITE; | |
} | |
static av_always_inline int isBGRinInt(enum AVPixelFormat pix_fmt) | |
{ | |
return pix_fmt == AV_PIX_FMT_BGR48BE || | |
pix_fmt == AV_PIX_FMT_BGR48LE || | |
pix_fmt == AV_PIX_FMT_BGR32 || | |
pix_fmt == AV_PIX_FMT_BGR32_1 || | |
pix_fmt == AV_PIX_FMT_BGR24 || | |
pix_fmt == AV_PIX_FMT_BGR565BE || | |
pix_fmt == AV_PIX_FMT_BGR565LE || | |
pix_fmt == AV_PIX_FMT_BGR555BE || | |
pix_fmt == AV_PIX_FMT_BGR555LE || | |
pix_fmt == AV_PIX_FMT_BGR444BE || | |
pix_fmt == AV_PIX_FMT_BGR444LE || | |
pix_fmt == AV_PIX_FMT_BGR8 || | |
pix_fmt == AV_PIX_FMT_BGR4 || | |
pix_fmt == AV_PIX_FMT_BGR4_BYTE || | |
pix_fmt == AV_PIX_FMT_BGRA64BE || | |
pix_fmt == AV_PIX_FMT_BGRA64LE || | |
pix_fmt == AV_PIX_FMT_MONOBLACK || | |
pix_fmt == AV_PIX_FMT_MONOWHITE; | |
} | |
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return !!(desc->flags & AV_PIX_FMT_FLAG_BAYER); | |
} | |
static av_always_inline int isBayer16BPS(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return desc->comp[1].depth == 8; | |
} | |
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return (desc->flags & AV_PIX_FMT_FLAG_RGB) || | |
pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE; | |
} | |
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return desc->flags & AV_PIX_FMT_FLAG_FLOAT; | |
} | |
static av_always_inline int isFloat16(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return (desc->flags & AV_PIX_FMT_FLAG_FLOAT) && desc->comp[0].depth == 16; | |
} | |
static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
if (pix_fmt == AV_PIX_FMT_PAL8) | |
return 1; | |
return desc->flags & AV_PIX_FMT_FLAG_ALPHA; | |
} | |
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return (desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) || | |
pix_fmt == AV_PIX_FMT_PAL8 || | |
pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE; | |
} | |
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR)); | |
} | |
static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB); | |
} | |
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == | |
(AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)); | |
} | |
static av_always_inline int usePal(enum AVPixelFormat pix_fmt) | |
{ | |
switch (pix_fmt) { | |
case AV_PIX_FMT_PAL8: | |
case AV_PIX_FMT_BGR4_BYTE: | |
case AV_PIX_FMT_BGR8: | |
case AV_PIX_FMT_GRAY8: | |
case AV_PIX_FMT_RGB4_BYTE: | |
case AV_PIX_FMT_RGB8: | |
return 1; | |
default: | |
return 0; | |
} | |
} | |
/* | |
* Identity formats where the data is in the high bits, and the low bits are shifted away. | |
*/ | |
static av_always_inline int isDataInHighBits(enum AVPixelFormat pix_fmt) | |
{ | |
int i; | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
if (desc->flags & (AV_PIX_FMT_FLAG_BITSTREAM | AV_PIX_FMT_FLAG_HWACCEL)) | |
return 0; | |
for (i = 0; i < desc->nb_components; i++) { | |
if (!desc->comp[i].shift) | |
return 0; | |
if ((desc->comp[i].shift + desc->comp[i].depth) & 0x7) | |
return 0; | |
} | |
return 1; | |
} | |
/* | |
* Identity formats where the chroma planes are swapped (CrCb order). | |
*/ | |
static av_always_inline int isSwappedChroma(enum AVPixelFormat pix_fmt) | |
{ | |
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); | |
av_assert0(desc); | |
if (!isYUV(pix_fmt)) | |
return 0; | |
if ((desc->flags & AV_PIX_FMT_FLAG_ALPHA) && desc->nb_components < 4) | |
return 0; | |
if (desc->nb_components < 3) | |
return 0; | |
if (!isPlanarYUV(pix_fmt) || isSemiPlanarYUV(pix_fmt)) | |
return desc->comp[1].offset > desc->comp[2].offset; | |
else | |
return desc->comp[1].plane > desc->comp[2].plane; | |
} | |
extern const uint64_t ff_dither4[2]; | |
extern const uint64_t ff_dither8[2]; | |
extern const uint8_t ff_dither_2x2_4[3][8]; | |
extern const uint8_t ff_dither_2x2_8[3][8]; | |
extern const uint8_t ff_dither_4x4_16[5][8]; | |
extern const uint8_t ff_dither_8x8_32[9][8]; | |
extern const uint8_t ff_dither_8x8_73[9][8]; | |
extern const uint8_t ff_dither_8x8_128[9][8]; | |
extern const uint8_t ff_dither_8x8_220[9][8]; | |
extern const int32_t ff_yuv2rgb_coeffs[11][4]; | |
extern const AVClass ff_sws_context_class; | |
/** | |
* Set c->convert_unscaled to an unscaled converter if one exists for the | |
* specific source and destination formats, bit depths, flags, etc. | |
*/ | |
void ff_get_unscaled_swscale(SwsContext *c); | |
void ff_get_unscaled_swscale_ppc(SwsContext *c); | |
void ff_get_unscaled_swscale_arm(SwsContext *c); | |
void ff_get_unscaled_swscale_aarch64(SwsContext *c); | |
void ff_sws_init_scale(SwsContext *c); | |
void ff_sws_init_input_funcs(SwsContext *c); | |
void ff_sws_init_output_funcs(SwsContext *c, | |
yuv2planar1_fn *yuv2plane1, | |
yuv2planarX_fn *yuv2planeX, | |
yuv2interleavedX_fn *yuv2nv12cX, | |
yuv2packed1_fn *yuv2packed1, | |
yuv2packed2_fn *yuv2packed2, | |
yuv2packedX_fn *yuv2packedX, | |
yuv2anyX_fn *yuv2anyX); | |
void ff_sws_init_swscale_ppc(SwsContext *c); | |
void ff_sws_init_swscale_vsx(SwsContext *c); | |
void ff_sws_init_swscale_x86(SwsContext *c); | |
void ff_sws_init_swscale_aarch64(SwsContext *c); | |
void ff_sws_init_swscale_arm(SwsContext *c); | |
void ff_sws_init_swscale_loongarch(SwsContext *c); | |
void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth, | |
const uint8_t *src, int srcW, int xInc); | |
void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2, | |
int dstWidth, const uint8_t *src1, | |
const uint8_t *src2, int srcW, int xInc); | |
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, | |
int16_t *filter, int32_t *filterPos, | |
int numSplits); | |
void ff_hyscale_fast_mmxext(SwsContext *c, int16_t *dst, | |
int dstWidth, const uint8_t *src, | |
int srcW, int xInc); | |
void ff_hcscale_fast_mmxext(SwsContext *c, int16_t *dst1, int16_t *dst2, | |
int dstWidth, const uint8_t *src1, | |
const uint8_t *src2, int srcW, int xInc); | |
/** | |
* Allocate and return an SwsContext. | |
* This is like sws_getContext() but does not perform the init step, allowing | |
* the user to set additional AVOptions. | |
* | |
* @see sws_getContext() | |
*/ | |
struct SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, | |
int dstW, int dstH, enum AVPixelFormat dstFormat, | |
int flags, const double *param); | |
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], | |
int srcStride[], int srcSliceY, int srcSliceH, | |
uint8_t *dst[], int dstStride[]); | |
static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y, | |
int alpha, int bits, const int big_endian) | |
{ | |
int i, j; | |
uint8_t *ptr = plane + stride * y; | |
int v = alpha ? 0xFFFF>>(16-bits) : (1<<(bits-1)); | |
for (i = 0; i < height; i++) { | |
if (big_endian) { | |
FILL(AV_WB16); | |
} else { | |
FILL(AV_WL16); | |
} | |
ptr += stride; | |
} | |
} | |
static inline void fillPlane32(uint8_t *plane, int stride, int width, int height, int y, | |
int alpha, int bits, const int big_endian, int is_float) | |
{ | |
int i, j; | |
uint8_t *ptr = plane + stride * y; | |
uint32_t v; | |
uint32_t onef32 = 0x3f800000; | |
if (is_float) | |
v = alpha ? onef32 : 0; | |
else | |
v = alpha ? 0xFFFFFFFF>>(32-bits) : (1<<(bits-1)); | |
for (i = 0; i < height; i++) { | |
if (big_endian) { | |
FILL(AV_WB32); | |
} else { | |
FILL(AV_WL32); | |
} | |
ptr += stride; | |
} | |
} | |
/// Slice plane | |
typedef struct SwsPlane | |
{ | |
int available_lines; ///< max number of lines that can be hold by this plane | |
int sliceY; ///< index of first line | |
int sliceH; ///< number of lines | |
uint8_t **line; ///< line buffer | |
uint8_t **tmp; ///< Tmp line buffer used by mmx code | |
} SwsPlane; | |
/** | |
* Struct which defines a slice of an image to be scaled or an output for | |
* a scaled slice. | |
* A slice can also be used as intermediate ring buffer for scaling steps. | |
*/ | |
typedef struct SwsSlice | |
{ | |
int width; ///< Slice line width | |
int h_chr_sub_sample; ///< horizontal chroma subsampling factor | |
int v_chr_sub_sample; ///< vertical chroma subsampling factor | |
int is_ring; ///< flag to identify if this slice is a ring buffer | |
int should_free_lines; ///< flag to identify if there are dynamic allocated lines | |
enum AVPixelFormat fmt; ///< planes pixel format | |
SwsPlane plane[MAX_SLICE_PLANES]; ///< color planes | |
} SwsSlice; | |
/** | |
* Struct which holds all necessary data for processing a slice. | |
* A processing step can be a color conversion or horizontal/vertical scaling. | |
*/ | |
typedef struct SwsFilterDescriptor | |
{ | |
SwsSlice *src; ///< Source slice | |
SwsSlice *dst; ///< Output slice | |
int alpha; ///< Flag for processing alpha channel | |
void *instance; ///< Filter instance data | |
/// Function for processing input slice sliceH lines starting from line sliceY | |
int (*process)(SwsContext *c, struct SwsFilterDescriptor *desc, int sliceY, int sliceH); | |
} SwsFilterDescriptor; | |
// warp input lines in the form (src + width*i + j) to slice format (line[i][j]) | |
// relative=true means first line src[x][0] otherwise first line is src[x][lum/crh Y] | |
int ff_init_slice_from_src(SwsSlice * s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative); | |
// Initialize scaler filter descriptor chain | |
int ff_init_filters(SwsContext *c); | |
// Free all filter data | |
int ff_free_filters(SwsContext *c); | |
/* | |
function for applying ring buffer logic into slice s | |
It checks if the slice can hold more @lum lines, if yes | |
do nothing otherwise remove @lum least used lines. | |
It applies the same procedure for @chr lines. | |
*/ | |
int ff_rotate_slice(SwsSlice *s, int lum, int chr); | |
/// initializes gamma conversion descriptor | |
int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice * src, uint16_t *table); | |
/// initializes lum pixel format conversion descriptor | |
int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal); | |
/// initializes lum horizontal scaling descriptor | |
int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc); | |
/// initializes chr pixel format conversion descriptor | |
int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal); | |
/// initializes chr horizontal scaling descriptor | |
int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc); | |
int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst); | |
/// initializes vertical scaling descriptors | |
int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst); | |
/// setup vertical scaler functions | |
void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, | |
yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, | |
yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx); | |
void ff_sws_slice_worker(void *priv, int jobnr, int threadnr, | |
int nb_jobs, int nb_threads); | |
//number of extra lines to process | |
//shuffle filter and filterPos for hyScale and hcScale filters in avx2 | |
int ff_shuffle_filter_coefficients(SwsContext *c, int* filterPos, int filterSize, int16_t *filter, int dstW); | |