Spaces:
Runtime error
Runtime error
/* | |
* AAC encoder | |
* Copyright (C) 2008 Konstantin Shishkov | |
* | |
* This file is part of FFmpeg. | |
* | |
* FFmpeg is free software; you can redistribute it and/or | |
* modify it under the terms of the GNU Lesser General Public | |
* License as published by the Free Software Foundation; either | |
* version 2.1 of the License, or (at your option) any later version. | |
* | |
* FFmpeg is distributed in the hope that it will be useful, | |
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
* Lesser General Public License for more details. | |
* | |
* You should have received a copy of the GNU Lesser General Public | |
* License along with FFmpeg; if not, write to the Free Software | |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
*/ | |
/** | |
* @file | |
* AAC encoder | |
*/ | |
/*********************************** | |
* TODOs: | |
* add sane pulse detection | |
***********************************/ | |
/** | |
* List of PCE (Program Configuration Element) for the channel layouts listed | |
* in channel_layout.h | |
* | |
* For those wishing in the future to add other layouts: | |
* | |
* - num_ele: number of elements in each group of front, side, back, lfe channels | |
* (an element is of type SCE (single channel), CPE (channel pair) for | |
* the first 3 groups; and is LFE for LFE group). | |
* | |
* - pairing: 0 for an SCE element or 1 for a CPE; does not apply to LFE group | |
* | |
* - index: there are three independent indices for SCE, CPE and LFE; | |
* they are incremented irrespective of the group to which the element belongs; | |
* they are not reset when going from one group to another | |
* | |
* Example: for 7.0 channel layout, | |
* .pairing = { { 1, 0 }, { 1 }, { 1 }, }, (3 CPE and 1 SCE in front group) | |
* .index = { { 0, 0 }, { 1 }, { 2 }, }, | |
* (index is 0 for the single SCE but goes from 0 to 2 for the CPEs) | |
* | |
* The index order impacts the channel ordering. But is otherwise arbitrary | |
* (the sequence could have been 2, 0, 1 instead of 0, 1, 2). | |
* | |
* Spec allows for discontinuous indices, e.g. if one has a total of two SCE, | |
* SCE.0 SCE.15 is OK per spec; BUT it won't be decoded by our AAC decoder | |
* which at this time requires that indices fully cover some range starting | |
* from 0 (SCE.1 SCE.0 is OK but not SCE.0 SCE.15). | |
* | |
* - config_map: total number of elements and their types. Beware, the way the | |
* types are ordered impacts the final channel ordering. | |
* | |
* - reorder_map: reorders the channels. | |
* | |
*/ | |
static const AACPCEInfo aac_pce_configs[] = { | |
{ | |
.layout = AV_CHANNEL_LAYOUT_MONO, | |
.num_ele = { 1, 0, 0, 0 }, | |
.pairing = { { 0 }, }, | |
.index = { { 0 }, }, | |
.config_map = { 1, TYPE_SCE, }, | |
.reorder_map = { 0 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_STEREO, | |
.num_ele = { 1, 0, 0, 0 }, | |
.pairing = { { 1 }, }, | |
.index = { { 0 }, }, | |
.config_map = { 1, TYPE_CPE, }, | |
.reorder_map = { 0, 1 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_2POINT1, | |
.num_ele = { 1, 0, 0, 1 }, | |
.pairing = { { 1 }, }, | |
.index = { { 0 },{ 0 },{ 0 },{ 0 } }, | |
.config_map = { 2, TYPE_CPE, TYPE_LFE }, | |
.reorder_map = { 0, 1, 2 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_2_1, | |
.num_ele = { 1, 0, 1, 0 }, | |
.pairing = { { 1 },{ 0 },{ 0 } }, | |
.index = { { 0 },{ 0 },{ 0 }, }, | |
.config_map = { 2, TYPE_CPE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_SURROUND, | |
.num_ele = { 2, 0, 0, 0 }, | |
.pairing = { { 1, 0 }, }, | |
.index = { { 0, 0 }, }, | |
.config_map = { 2, TYPE_CPE, TYPE_SCE, }, | |
.reorder_map = { 0, 1, 2 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_3POINT1, | |
.num_ele = { 2, 0, 0, 1 }, | |
.pairing = { { 1, 0 }, }, | |
.index = { { 0, 0 }, { 0 }, { 0 }, { 0 }, }, | |
.config_map = { 3, TYPE_CPE, TYPE_SCE, TYPE_LFE }, | |
.reorder_map = { 0, 1, 2, 3 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_4POINT0, | |
.num_ele = { 2, 0, 1, 0 }, | |
.pairing = { { 1, 0 }, { 0 }, { 0 }, }, | |
.index = { { 0, 0 }, { 0 }, { 1 } }, | |
.config_map = { 3, TYPE_CPE, TYPE_SCE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_4POINT1, | |
.num_ele = { 2, 1, 1, 0 }, | |
.pairing = { { 1, 0 }, { 0 }, { 0 }, }, | |
.index = { { 0, 0 }, { 1 }, { 2 }, { 0 } }, | |
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3, 4 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_2_2, | |
.num_ele = { 1, 1, 0, 0 }, | |
.pairing = { { 1 }, { 1 }, }, | |
.index = { { 0 }, { 1 }, }, | |
.config_map = { 2, TYPE_CPE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_QUAD, | |
.num_ele = { 1, 0, 1, 0 }, | |
.pairing = { { 1 }, { 0 }, { 1 }, }, | |
.index = { { 0 }, { 0 }, { 1 } }, | |
.config_map = { 2, TYPE_CPE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_5POINT0, | |
.num_ele = { 2, 1, 0, 0 }, | |
.pairing = { { 1, 0 }, { 1 }, }, | |
.index = { { 0, 0 }, { 1 } }, | |
.config_map = { 3, TYPE_CPE, TYPE_SCE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3, 4 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_5POINT1, | |
.num_ele = { 2, 1, 1, 0 }, | |
.pairing = { { 1, 0 }, { 0 }, { 1 }, }, | |
.index = { { 0, 0 }, { 1 }, { 1 } }, | |
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_5POINT0_BACK, | |
.num_ele = { 2, 0, 1, 0 }, | |
.pairing = { { 1, 0 }, { 0 }, { 1 } }, | |
.index = { { 0, 0 }, { 0 }, { 1 } }, | |
.config_map = { 3, TYPE_CPE, TYPE_SCE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3, 4 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_5POINT1_BACK, | |
.num_ele = { 2, 1, 1, 0 }, | |
.pairing = { { 1, 0 }, { 0 }, { 1 }, }, | |
.index = { { 0, 0 }, { 1 }, { 1 } }, | |
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_6POINT0, | |
.num_ele = { 2, 1, 1, 0 }, | |
.pairing = { { 1, 0 }, { 1 }, { 0 }, }, | |
.index = { { 0, 0 }, { 1 }, { 1 } }, | |
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_6POINT0_FRONT, | |
.num_ele = { 2, 1, 0, 0 }, | |
.pairing = { { 1, 1 }, { 1 } }, | |
.index = { { 1, 0 }, { 2 }, }, | |
.config_map = { 3, TYPE_CPE, TYPE_CPE, TYPE_CPE, }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_HEXAGONAL, | |
.num_ele = { 2, 0, 2, 0 }, | |
.pairing = { { 1, 0 },{ 0 },{ 1, 0 }, }, | |
.index = { { 0, 0 },{ 0 },{ 1, 1 } }, | |
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE, }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_6POINT1, | |
.num_ele = { 2, 1, 2, 0 }, | |
.pairing = { { 1, 0 },{ 0 },{ 1, 0 }, }, | |
.index = { { 0, 0 },{ 1 },{ 1, 2 } }, | |
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_6POINT1_BACK, | |
.num_ele = { 2, 1, 2, 0 }, | |
.pairing = { { 1, 0 }, { 0 }, { 1, 0 }, }, | |
.index = { { 0, 0 }, { 1 }, { 1, 2 } }, | |
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_6POINT1_FRONT, | |
.num_ele = { 2, 1, 2, 0 }, | |
.pairing = { { 1, 0 }, { 0 }, { 1, 0 }, }, | |
.index = { { 0, 0 }, { 1 }, { 1, 2 } }, | |
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_7POINT0, | |
.num_ele = { 2, 1, 1, 0 }, | |
.pairing = { { 1, 0 }, { 1 }, { 1 }, }, | |
.index = { { 0, 0 }, { 1 }, { 2 }, }, | |
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_7POINT0_FRONT, | |
.num_ele = { 2, 1, 1, 0 }, | |
.pairing = { { 1, 0 }, { 1 }, { 1 }, }, | |
.index = { { 0, 0 }, { 1 }, { 2 }, }, | |
.config_map = { 4, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_7POINT1, | |
.num_ele = { 2, 1, 2, 0 }, | |
.pairing = { { 1, 0 }, { 0 }, { 1, 1 }, }, | |
.index = { { 0, 0 }, { 1 }, { 1, 2 }, { 0 } }, | |
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_7POINT1_WIDE, | |
.num_ele = { 2, 1, 2, 0 }, | |
.pairing = { { 1, 0 }, { 0 },{ 1, 1 }, }, | |
.index = { { 0, 0 }, { 1 }, { 1, 2 }, { 0 } }, | |
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_7POINT1_WIDE_BACK, | |
.num_ele = { 2, 1, 2, 0 }, | |
.pairing = { { 1, 0 }, { 0 }, { 1, 1 }, }, | |
.index = { { 0, 0 }, { 1 }, { 1, 2 }, { 0 } }, | |
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_SCE, TYPE_CPE, TYPE_CPE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_OCTAGONAL, | |
.num_ele = { 2, 1, 2, 0 }, | |
.pairing = { { 1, 0 }, { 1 }, { 1, 0 }, }, | |
.index = { { 0, 0 }, { 1 }, { 2, 1 } }, | |
.config_map = { 5, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_CPE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7 }, | |
}, | |
{ /* Meant for order 2/mixed ambisonics */ | |
.layout = { .order = AV_CHANNEL_ORDER_NATIVE, .nb_channels = 9, | |
.u.mask = AV_CH_LAYOUT_OCTAGONAL | AV_CH_TOP_CENTER }, | |
.num_ele = { 2, 2, 2, 0 }, | |
.pairing = { { 1, 0 }, { 1, 0 }, { 1, 0 }, }, | |
.index = { { 0, 0 }, { 1, 1 }, { 2, 2 } }, | |
.config_map = { 6, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7, 8 }, | |
}, | |
{ /* Meant for order 2/mixed ambisonics */ | |
.layout = { .order = AV_CHANNEL_ORDER_NATIVE, .nb_channels = 10, | |
.u.mask = AV_CH_LAYOUT_6POINT0_FRONT | AV_CH_BACK_CENTER | | |
AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT | AV_CH_TOP_CENTER }, | |
.num_ele = { 2, 2, 2, 0 }, | |
.pairing = { { 1, 1 }, { 1, 0 }, { 1, 0 }, }, | |
.index = { { 0, 1 }, { 2, 0 }, { 3, 1 } }, | |
.config_map = { 6, TYPE_CPE, TYPE_CPE, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }, | |
}, | |
{ | |
.layout = AV_CHANNEL_LAYOUT_HEXADECAGONAL, | |
.num_ele = { 4, 2, 4, 0 }, | |
.pairing = { { 1, 0, 1, 0 }, { 1, 1 }, { 1, 0, 1, 0 }, }, | |
.index = { { 0, 0, 1, 1 }, { 2, 3 }, { 4, 2, 5, 3 } }, | |
.config_map = { 10, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_CPE, TYPE_CPE, TYPE_SCE, TYPE_CPE, TYPE_SCE }, | |
.reorder_map = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, | |
}, | |
}; | |
static void put_pce(PutBitContext *pb, AVCodecContext *avctx) | |
{ | |
int i, j; | |
AACEncContext *s = avctx->priv_data; | |
AACPCEInfo *pce = &s->pce; | |
const int bitexact = avctx->flags & AV_CODEC_FLAG_BITEXACT; | |
const char *aux_data = bitexact ? "Lavc" : LIBAVCODEC_IDENT; | |
put_bits(pb, 4, 0); | |
put_bits(pb, 2, avctx->profile); | |
put_bits(pb, 4, s->samplerate_index); | |
put_bits(pb, 4, pce->num_ele[0]); /* Front */ | |
put_bits(pb, 4, pce->num_ele[1]); /* Side */ | |
put_bits(pb, 4, pce->num_ele[2]); /* Back */ | |
put_bits(pb, 2, pce->num_ele[3]); /* LFE */ | |
put_bits(pb, 3, 0); /* Assoc data */ | |
put_bits(pb, 4, 0); /* CCs */ | |
put_bits(pb, 1, 0); /* Stereo mixdown */ | |
put_bits(pb, 1, 0); /* Mono mixdown */ | |
put_bits(pb, 1, 0); /* Something else */ | |
for (i = 0; i < 4; i++) { | |
for (j = 0; j < pce->num_ele[i]; j++) { | |
if (i < 3) | |
put_bits(pb, 1, pce->pairing[i][j]); | |
put_bits(pb, 4, pce->index[i][j]); | |
} | |
} | |
align_put_bits(pb); | |
put_bits(pb, 8, strlen(aux_data)); | |
ff_put_string(pb, aux_data, 0); | |
} | |
/** | |
* Make AAC audio config object. | |
* @see 1.6.2.1 "Syntax - AudioSpecificConfig" | |
*/ | |
static int put_audio_specific_config(AVCodecContext *avctx) | |
{ | |
PutBitContext pb; | |
AACEncContext *s = avctx->priv_data; | |
int channels = (!s->needs_pce)*(s->channels - (s->channels == 8 ? 1 : 0)); | |
const int max_size = 32; | |
avctx->extradata = av_mallocz(max_size); | |
if (!avctx->extradata) | |
return AVERROR(ENOMEM); | |
init_put_bits(&pb, avctx->extradata, max_size); | |
put_bits(&pb, 5, s->profile+1); //profile | |
put_bits(&pb, 4, s->samplerate_index); //sample rate index | |
put_bits(&pb, 4, channels); | |
//GASpecificConfig | |
put_bits(&pb, 1, 0); //frame length - 1024 samples | |
put_bits(&pb, 1, 0); //does not depend on core coder | |
put_bits(&pb, 1, 0); //is not extension | |
if (s->needs_pce) | |
put_pce(&pb, avctx); | |
//Explicitly Mark SBR absent | |
put_bits(&pb, 11, 0x2b7); //sync extension | |
put_bits(&pb, 5, AOT_SBR); | |
put_bits(&pb, 1, 0); | |
flush_put_bits(&pb); | |
avctx->extradata_size = put_bytes_output(&pb); | |
return 0; | |
} | |
void ff_quantize_band_cost_cache_init(struct AACEncContext *s) | |
{ | |
++s->quantize_band_cost_cache_generation; | |
if (s->quantize_band_cost_cache_generation == 0) { | |
memset(s->quantize_band_cost_cache, 0, sizeof(s->quantize_band_cost_cache)); | |
s->quantize_band_cost_cache_generation = 1; | |
} | |
} | |
WINDOW_FUNC(only_long) | |
{ | |
const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024; | |
const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; | |
float *out = sce->ret_buf; | |
fdsp->vector_fmul (out, audio, lwindow, 1024); | |
fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024); | |
} | |
WINDOW_FUNC(long_start) | |
{ | |
const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; | |
const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; | |
float *out = sce->ret_buf; | |
fdsp->vector_fmul(out, audio, lwindow, 1024); | |
memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448); | |
fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128); | |
memset(out + 1024 + 576, 0, sizeof(out[0]) * 448); | |
} | |
WINDOW_FUNC(long_stop) | |
{ | |
const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024; | |
const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; | |
float *out = sce->ret_buf; | |
memset(out, 0, sizeof(out[0]) * 448); | |
fdsp->vector_fmul(out + 448, audio + 448, swindow, 128); | |
memcpy(out + 576, audio + 576, sizeof(out[0]) * 448); | |
fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024); | |
} | |
WINDOW_FUNC(eight_short) | |
{ | |
const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; | |
const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; | |
const float *in = audio + 448; | |
float *out = sce->ret_buf; | |
int w; | |
for (w = 0; w < 8; w++) { | |
fdsp->vector_fmul (out, in, w ? pwindow : swindow, 128); | |
out += 128; | |
in += 128; | |
fdsp->vector_fmul_reverse(out, in, swindow, 128); | |
out += 128; | |
} | |
} | |
static void (*const apply_window[4])(AVFloatDSPContext *fdsp, | |
SingleChannelElement *sce, | |
const float *audio) = { | |
[ONLY_LONG_SEQUENCE] = apply_only_long_window, | |
[LONG_START_SEQUENCE] = apply_long_start_window, | |
[EIGHT_SHORT_SEQUENCE] = apply_eight_short_window, | |
[LONG_STOP_SEQUENCE] = apply_long_stop_window | |
}; | |
static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce, | |
float *audio) | |
{ | |
int i; | |
float *output = sce->ret_buf; | |
apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, audio); | |
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) | |
s->mdct1024_fn(s->mdct1024, sce->coeffs, output, sizeof(float)); | |
else | |
for (i = 0; i < 1024; i += 128) | |
s->mdct128_fn(s->mdct128, &sce->coeffs[i], output + i*2, sizeof(float)); | |
memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024); | |
memcpy(sce->pcoeffs, sce->coeffs, sizeof(sce->pcoeffs)); | |
} | |
/** | |
* Encode ics_info element. | |
* @see Table 4.6 (syntax of ics_info) | |
*/ | |
static void put_ics_info(AACEncContext *s, IndividualChannelStream *info) | |
{ | |
int w; | |
put_bits(&s->pb, 1, 0); // ics_reserved bit | |
put_bits(&s->pb, 2, info->window_sequence[0]); | |
put_bits(&s->pb, 1, info->use_kb_window[0]); | |
if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) { | |
put_bits(&s->pb, 6, info->max_sfb); | |
put_bits(&s->pb, 1, !!info->predictor_present); | |
} else { | |
put_bits(&s->pb, 4, info->max_sfb); | |
for (w = 1; w < 8; w++) | |
put_bits(&s->pb, 1, !info->group_len[w]); | |
} | |
} | |
/** | |
* Encode MS data. | |
* @see 4.6.8.1 "Joint Coding - M/S Stereo" | |
*/ | |
static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe) | |
{ | |
int i, w; | |
put_bits(pb, 2, cpe->ms_mode); | |
if (cpe->ms_mode == 1) | |
for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w]) | |
for (i = 0; i < cpe->ch[0].ics.max_sfb; i++) | |
put_bits(pb, 1, cpe->ms_mask[w*16 + i]); | |
} | |
/** | |
* Produce integer coefficients from scalefactors provided by the model. | |
*/ | |
static void adjust_frame_information(ChannelElement *cpe, int chans) | |
{ | |
int i, w, w2, g, ch; | |
int maxsfb, cmaxsfb; | |
for (ch = 0; ch < chans; ch++) { | |
IndividualChannelStream *ics = &cpe->ch[ch].ics; | |
maxsfb = 0; | |
cpe->ch[ch].pulse.num_pulse = 0; | |
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) { | |
for (w2 = 0; w2 < ics->group_len[w]; w2++) { | |
for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w*16+cmaxsfb-1]; cmaxsfb--) | |
; | |
maxsfb = FFMAX(maxsfb, cmaxsfb); | |
} | |
} | |
ics->max_sfb = maxsfb; | |
//adjust zero bands for window groups | |
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) { | |
for (g = 0; g < ics->max_sfb; g++) { | |
i = 1; | |
for (w2 = w; w2 < w + ics->group_len[w]; w2++) { | |
if (!cpe->ch[ch].zeroes[w2*16 + g]) { | |
i = 0; | |
break; | |
} | |
} | |
cpe->ch[ch].zeroes[w*16 + g] = i; | |
} | |
} | |
} | |
if (chans > 1 && cpe->common_window) { | |
IndividualChannelStream *ics0 = &cpe->ch[0].ics; | |
IndividualChannelStream *ics1 = &cpe->ch[1].ics; | |
int msc = 0; | |
ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb); | |
ics1->max_sfb = ics0->max_sfb; | |
for (w = 0; w < ics0->num_windows*16; w += 16) | |
for (i = 0; i < ics0->max_sfb; i++) | |
if (cpe->ms_mask[w+i]) | |
msc++; | |
if (msc == 0 || ics0->max_sfb == 0) | |
cpe->ms_mode = 0; | |
else | |
cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2; | |
} | |
} | |
static void apply_intensity_stereo(ChannelElement *cpe) | |
{ | |
int w, w2, g, i; | |
IndividualChannelStream *ics = &cpe->ch[0].ics; | |
if (!cpe->common_window) | |
return; | |
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) { | |
for (w2 = 0; w2 < ics->group_len[w]; w2++) { | |
int start = (w+w2) * 128; | |
for (g = 0; g < ics->num_swb; g++) { | |
int p = -1 + 2 * (cpe->ch[1].band_type[w*16+g] - 14); | |
float scale = cpe->ch[0].is_ener[w*16+g]; | |
if (!cpe->is_mask[w*16 + g]) { | |
start += ics->swb_sizes[g]; | |
continue; | |
} | |
if (cpe->ms_mask[w*16 + g]) | |
p *= -1; | |
for (i = 0; i < ics->swb_sizes[g]; i++) { | |
float sum = (cpe->ch[0].coeffs[start+i] + p*cpe->ch[1].coeffs[start+i])*scale; | |
cpe->ch[0].coeffs[start+i] = sum; | |
cpe->ch[1].coeffs[start+i] = 0.0f; | |
} | |
start += ics->swb_sizes[g]; | |
} | |
} | |
} | |
} | |
static void apply_mid_side_stereo(ChannelElement *cpe) | |
{ | |
int w, w2, g, i; | |
IndividualChannelStream *ics = &cpe->ch[0].ics; | |
if (!cpe->common_window) | |
return; | |
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) { | |
for (w2 = 0; w2 < ics->group_len[w]; w2++) { | |
int start = (w+w2) * 128; | |
for (g = 0; g < ics->num_swb; g++) { | |
/* ms_mask can be used for other purposes in PNS and I/S, | |
* so must not apply M/S if any band uses either, even if | |
* ms_mask is set. | |
*/ | |
if (!cpe->ms_mask[w*16 + g] || cpe->is_mask[w*16 + g] | |
|| cpe->ch[0].band_type[w*16 + g] >= NOISE_BT | |
|| cpe->ch[1].band_type[w*16 + g] >= NOISE_BT) { | |
start += ics->swb_sizes[g]; | |
continue; | |
} | |
for (i = 0; i < ics->swb_sizes[g]; i++) { | |
float L = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) * 0.5f; | |
float R = L - cpe->ch[1].coeffs[start+i]; | |
cpe->ch[0].coeffs[start+i] = L; | |
cpe->ch[1].coeffs[start+i] = R; | |
} | |
start += ics->swb_sizes[g]; | |
} | |
} | |
} | |
} | |
/** | |
* Encode scalefactor band coding type. | |
*/ | |
static void encode_band_info(AACEncContext *s, SingleChannelElement *sce) | |
{ | |
int w; | |
if (s->coder->set_special_band_scalefactors) | |
s->coder->set_special_band_scalefactors(s, sce); | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) | |
s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda); | |
} | |
/** | |
* Encode scalefactors. | |
*/ | |
static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s, | |
SingleChannelElement *sce) | |
{ | |
int diff, off_sf = sce->sf_idx[0], off_pns = sce->sf_idx[0] - NOISE_OFFSET; | |
int off_is = 0, noise_flag = 1; | |
int i, w; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (i = 0; i < sce->ics.max_sfb; i++) { | |
if (!sce->zeroes[w*16 + i]) { | |
if (sce->band_type[w*16 + i] == NOISE_BT) { | |
diff = sce->sf_idx[w*16 + i] - off_pns; | |
off_pns = sce->sf_idx[w*16 + i]; | |
if (noise_flag-- > 0) { | |
put_bits(&s->pb, NOISE_PRE_BITS, diff + NOISE_PRE); | |
continue; | |
} | |
} else if (sce->band_type[w*16 + i] == INTENSITY_BT || | |
sce->band_type[w*16 + i] == INTENSITY_BT2) { | |
diff = sce->sf_idx[w*16 + i] - off_is; | |
off_is = sce->sf_idx[w*16 + i]; | |
} else { | |
diff = sce->sf_idx[w*16 + i] - off_sf; | |
off_sf = sce->sf_idx[w*16 + i]; | |
} | |
diff += SCALE_DIFF_ZERO; | |
av_assert0(diff >= 0 && diff <= 120); | |
put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]); | |
} | |
} | |
} | |
} | |
/** | |
* Encode pulse data. | |
*/ | |
static void encode_pulses(AACEncContext *s, Pulse *pulse) | |
{ | |
int i; | |
put_bits(&s->pb, 1, !!pulse->num_pulse); | |
if (!pulse->num_pulse) | |
return; | |
put_bits(&s->pb, 2, pulse->num_pulse - 1); | |
put_bits(&s->pb, 6, pulse->start); | |
for (i = 0; i < pulse->num_pulse; i++) { | |
put_bits(&s->pb, 5, pulse->pos[i]); | |
put_bits(&s->pb, 4, pulse->amp[i]); | |
} | |
} | |
/** | |
* Encode spectral coefficients processed by psychoacoustic model. | |
*/ | |
static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce) | |
{ | |
int start, i, w, w2; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
start = 0; | |
for (i = 0; i < sce->ics.max_sfb; i++) { | |
if (sce->zeroes[w*16 + i]) { | |
start += sce->ics.swb_sizes[i]; | |
continue; | |
} | |
for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) { | |
s->coder->quantize_and_encode_band(s, &s->pb, | |
&sce->coeffs[start + w2*128], | |
NULL, sce->ics.swb_sizes[i], | |
sce->sf_idx[w*16 + i], | |
sce->band_type[w*16 + i], | |
s->lambda, | |
sce->ics.window_clipping[w]); | |
} | |
start += sce->ics.swb_sizes[i]; | |
} | |
} | |
} | |
/** | |
* Downscale spectral coefficients for near-clipping windows to avoid artifacts | |
*/ | |
static void avoid_clipping(AACEncContext *s, SingleChannelElement *sce) | |
{ | |
int start, i, j, w; | |
if (sce->ics.clip_avoidance_factor < 1.0f) { | |
for (w = 0; w < sce->ics.num_windows; w++) { | |
start = 0; | |
for (i = 0; i < sce->ics.max_sfb; i++) { | |
float *swb_coeffs = &sce->coeffs[start + w*128]; | |
for (j = 0; j < sce->ics.swb_sizes[i]; j++) | |
swb_coeffs[j] *= sce->ics.clip_avoidance_factor; | |
start += sce->ics.swb_sizes[i]; | |
} | |
} | |
} | |
} | |
/** | |
* Encode one channel of audio data. | |
*/ | |
static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s, | |
SingleChannelElement *sce, | |
int common_window) | |
{ | |
put_bits(&s->pb, 8, sce->sf_idx[0]); | |
if (!common_window) { | |
put_ics_info(s, &sce->ics); | |
if (s->coder->encode_main_pred) | |
s->coder->encode_main_pred(s, sce); | |
if (s->coder->encode_ltp_info) | |
s->coder->encode_ltp_info(s, sce, 0); | |
} | |
encode_band_info(s, sce); | |
encode_scale_factors(avctx, s, sce); | |
encode_pulses(s, &sce->pulse); | |
put_bits(&s->pb, 1, !!sce->tns.present); | |
if (s->coder->encode_tns_info) | |
s->coder->encode_tns_info(s, sce); | |
put_bits(&s->pb, 1, 0); //ssr | |
encode_spectral_coeffs(s, sce); | |
return 0; | |
} | |
/** | |
* Write some auxiliary information about the created AAC file. | |
*/ | |
static void put_bitstream_info(AACEncContext *s, const char *name) | |
{ | |
int i, namelen, padbits; | |
namelen = strlen(name) + 2; | |
put_bits(&s->pb, 3, TYPE_FIL); | |
put_bits(&s->pb, 4, FFMIN(namelen, 15)); | |
if (namelen >= 15) | |
put_bits(&s->pb, 8, namelen - 14); | |
put_bits(&s->pb, 4, 0); //extension type - filler | |
padbits = -put_bits_count(&s->pb) & 7; | |
align_put_bits(&s->pb); | |
for (i = 0; i < namelen - 2; i++) | |
put_bits(&s->pb, 8, name[i]); | |
put_bits(&s->pb, 12 - padbits, 0); | |
} | |
/* | |
* Copy input samples. | |
* Channels are reordered from libavcodec's default order to AAC order. | |
*/ | |
static void copy_input_samples(AACEncContext *s, const AVFrame *frame) | |
{ | |
int ch; | |
int end = 2048 + (frame ? frame->nb_samples : 0); | |
const uint8_t *channel_map = s->reorder_map; | |
/* copy and remap input samples */ | |
for (ch = 0; ch < s->channels; ch++) { | |
/* copy last 1024 samples of previous frame to the start of the current frame */ | |
memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0])); | |
/* copy new samples and zero any remaining samples */ | |
if (frame) { | |
memcpy(&s->planar_samples[ch][2048], | |
frame->extended_data[channel_map[ch]], | |
frame->nb_samples * sizeof(s->planar_samples[0][0])); | |
} | |
memset(&s->planar_samples[ch][end], 0, | |
(3072 - end) * sizeof(s->planar_samples[0][0])); | |
} | |
} | |
static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, | |
const AVFrame *frame, int *got_packet_ptr) | |
{ | |
AACEncContext *s = avctx->priv_data; | |
float **samples = s->planar_samples, *samples2, *la, *overlap; | |
ChannelElement *cpe; | |
SingleChannelElement *sce; | |
IndividualChannelStream *ics; | |
int i, its, ch, w, chans, tag, start_ch, ret, frame_bits; | |
int target_bits, rate_bits, too_many_bits, too_few_bits; | |
int ms_mode = 0, is_mode = 0, tns_mode = 0, pred_mode = 0; | |
int chan_el_counter[4]; | |
FFPsyWindowInfo windows[AAC_MAX_CHANNELS]; | |
/* add current frame to queue */ | |
if (frame) { | |
if ((ret = ff_af_queue_add(&s->afq, frame)) < 0) | |
return ret; | |
} else { | |
if (!s->afq.remaining_samples || (!s->afq.frame_alloc && !s->afq.frame_count)) | |
return 0; | |
} | |
copy_input_samples(s, frame); | |
if (s->psypp) | |
ff_psy_preprocess(s->psypp, s->planar_samples, s->channels); | |
if (!avctx->frame_num) | |
return 0; | |
start_ch = 0; | |
for (i = 0; i < s->chan_map[0]; i++) { | |
FFPsyWindowInfo* wi = windows + start_ch; | |
tag = s->chan_map[i+1]; | |
chans = tag == TYPE_CPE ? 2 : 1; | |
cpe = &s->cpe[i]; | |
for (ch = 0; ch < chans; ch++) { | |
int k; | |
float clip_avoidance_factor; | |
sce = &cpe->ch[ch]; | |
ics = &sce->ics; | |
s->cur_channel = start_ch + ch; | |
overlap = &samples[s->cur_channel][0]; | |
samples2 = overlap + 1024; | |
la = samples2 + (448+64); | |
if (!frame) | |
la = NULL; | |
if (tag == TYPE_LFE) { | |
wi[ch].window_type[0] = wi[ch].window_type[1] = ONLY_LONG_SEQUENCE; | |
wi[ch].window_shape = 0; | |
wi[ch].num_windows = 1; | |
wi[ch].grouping[0] = 1; | |
wi[ch].clipping[0] = 0; | |
/* Only the lowest 12 coefficients are used in a LFE channel. | |
* The expression below results in only the bottom 8 coefficients | |
* being used for 11.025kHz to 16kHz sample rates. | |
*/ | |
ics->num_swb = s->samplerate_index >= 8 ? 1 : 3; | |
} else { | |
wi[ch] = s->psy.model->window(&s->psy, samples2, la, s->cur_channel, | |
ics->window_sequence[0]); | |
} | |
ics->window_sequence[1] = ics->window_sequence[0]; | |
ics->window_sequence[0] = wi[ch].window_type[0]; | |
ics->use_kb_window[1] = ics->use_kb_window[0]; | |
ics->use_kb_window[0] = wi[ch].window_shape; | |
ics->num_windows = wi[ch].num_windows; | |
ics->swb_sizes = s->psy.bands [ics->num_windows == 8]; | |
ics->num_swb = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8]; | |
ics->max_sfb = FFMIN(ics->max_sfb, ics->num_swb); | |
ics->swb_offset = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ? | |
ff_swb_offset_128 [s->samplerate_index]: | |
ff_swb_offset_1024[s->samplerate_index]; | |
ics->tns_max_bands = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ? | |
ff_tns_max_bands_128 [s->samplerate_index]: | |
ff_tns_max_bands_1024[s->samplerate_index]; | |
for (w = 0; w < ics->num_windows; w++) | |
ics->group_len[w] = wi[ch].grouping[w]; | |
/* Calculate input sample maximums and evaluate clipping risk */ | |
clip_avoidance_factor = 0.0f; | |
for (w = 0; w < ics->num_windows; w++) { | |
const float *wbuf = overlap + w * 128; | |
const int wlen = 2048 / ics->num_windows; | |
float max = 0; | |
int j; | |
/* mdct input is 2 * output */ | |
for (j = 0; j < wlen; j++) | |
max = FFMAX(max, fabsf(wbuf[j])); | |
wi[ch].clipping[w] = max; | |
} | |
for (w = 0; w < ics->num_windows; w++) { | |
if (wi[ch].clipping[w] > CLIP_AVOIDANCE_FACTOR) { | |
ics->window_clipping[w] = 1; | |
clip_avoidance_factor = FFMAX(clip_avoidance_factor, wi[ch].clipping[w]); | |
} else { | |
ics->window_clipping[w] = 0; | |
} | |
} | |
if (clip_avoidance_factor > CLIP_AVOIDANCE_FACTOR) { | |
ics->clip_avoidance_factor = CLIP_AVOIDANCE_FACTOR / clip_avoidance_factor; | |
} else { | |
ics->clip_avoidance_factor = 1.0f; | |
} | |
apply_window_and_mdct(s, sce, overlap); | |
if (s->options.ltp && s->coder->update_ltp) { | |
s->coder->update_ltp(s, sce); | |
apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, &sce->ltp_state[0]); | |
s->mdct1024_fn(s->mdct1024, sce->lcoeffs, sce->ret_buf, sizeof(float)); | |
} | |
for (k = 0; k < 1024; k++) { | |
if (!(fabs(cpe->ch[ch].coeffs[k]) < 1E16)) { // Ensure headroom for energy calculation | |
av_log(avctx, AV_LOG_ERROR, "Input contains (near) NaN/+-Inf\n"); | |
return AVERROR(EINVAL); | |
} | |
} | |
avoid_clipping(s, sce); | |
} | |
start_ch += chans; | |
} | |
if ((ret = ff_alloc_packet(avctx, avpkt, 8192 * s->channels)) < 0) | |
return ret; | |
frame_bits = its = 0; | |
do { | |
init_put_bits(&s->pb, avpkt->data, avpkt->size); | |
if ((avctx->frame_num & 0xFF)==1 && !(avctx->flags & AV_CODEC_FLAG_BITEXACT)) | |
put_bitstream_info(s, LIBAVCODEC_IDENT); | |
start_ch = 0; | |
target_bits = 0; | |
memset(chan_el_counter, 0, sizeof(chan_el_counter)); | |
for (i = 0; i < s->chan_map[0]; i++) { | |
FFPsyWindowInfo* wi = windows + start_ch; | |
const float *coeffs[2]; | |
tag = s->chan_map[i+1]; | |
chans = tag == TYPE_CPE ? 2 : 1; | |
cpe = &s->cpe[i]; | |
cpe->common_window = 0; | |
memset(cpe->is_mask, 0, sizeof(cpe->is_mask)); | |
memset(cpe->ms_mask, 0, sizeof(cpe->ms_mask)); | |
put_bits(&s->pb, 3, tag); | |
put_bits(&s->pb, 4, chan_el_counter[tag]++); | |
for (ch = 0; ch < chans; ch++) { | |
sce = &cpe->ch[ch]; | |
coeffs[ch] = sce->coeffs; | |
sce->ics.predictor_present = 0; | |
sce->ics.ltp.present = 0; | |
memset(sce->ics.ltp.used, 0, sizeof(sce->ics.ltp.used)); | |
memset(sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used)); | |
memset(&sce->tns, 0, sizeof(TemporalNoiseShaping)); | |
for (w = 0; w < 128; w++) | |
if (sce->band_type[w] > RESERVED_BT) | |
sce->band_type[w] = 0; | |
} | |
s->psy.bitres.alloc = -1; | |
s->psy.bitres.bits = s->last_frame_pb_count / s->channels; | |
s->psy.model->analyze(&s->psy, start_ch, coeffs, wi); | |
if (s->psy.bitres.alloc > 0) { | |
/* Lambda unused here on purpose, we need to take psy's unscaled allocation */ | |
target_bits += s->psy.bitres.alloc | |
* (s->lambda / (avctx->global_quality ? avctx->global_quality : 120)); | |
s->psy.bitres.alloc /= chans; | |
} | |
s->cur_type = tag; | |
for (ch = 0; ch < chans; ch++) { | |
s->cur_channel = start_ch + ch; | |
if (s->options.pns && s->coder->mark_pns) | |
s->coder->mark_pns(s, avctx, &cpe->ch[ch]); | |
s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda); | |
} | |
if (chans > 1 | |
&& wi[0].window_type[0] == wi[1].window_type[0] | |
&& wi[0].window_shape == wi[1].window_shape) { | |
cpe->common_window = 1; | |
for (w = 0; w < wi[0].num_windows; w++) { | |
if (wi[0].grouping[w] != wi[1].grouping[w]) { | |
cpe->common_window = 0; | |
break; | |
} | |
} | |
} | |
for (ch = 0; ch < chans; ch++) { /* TNS and PNS */ | |
sce = &cpe->ch[ch]; | |
s->cur_channel = start_ch + ch; | |
if (s->options.tns && s->coder->search_for_tns) | |
s->coder->search_for_tns(s, sce); | |
if (s->options.tns && s->coder->apply_tns_filt) | |
s->coder->apply_tns_filt(s, sce); | |
if (sce->tns.present) | |
tns_mode = 1; | |
if (s->options.pns && s->coder->search_for_pns) | |
s->coder->search_for_pns(s, avctx, sce); | |
} | |
s->cur_channel = start_ch; | |
if (s->options.intensity_stereo) { /* Intensity Stereo */ | |
if (s->coder->search_for_is) | |
s->coder->search_for_is(s, avctx, cpe); | |
if (cpe->is_mode) is_mode = 1; | |
apply_intensity_stereo(cpe); | |
} | |
if (s->options.pred) { /* Prediction */ | |
for (ch = 0; ch < chans; ch++) { | |
sce = &cpe->ch[ch]; | |
s->cur_channel = start_ch + ch; | |
if (s->options.pred && s->coder->search_for_pred) | |
s->coder->search_for_pred(s, sce); | |
if (cpe->ch[ch].ics.predictor_present) pred_mode = 1; | |
} | |
if (s->coder->adjust_common_pred) | |
s->coder->adjust_common_pred(s, cpe); | |
for (ch = 0; ch < chans; ch++) { | |
sce = &cpe->ch[ch]; | |
s->cur_channel = start_ch + ch; | |
if (s->options.pred && s->coder->apply_main_pred) | |
s->coder->apply_main_pred(s, sce); | |
} | |
s->cur_channel = start_ch; | |
} | |
if (s->options.mid_side) { /* Mid/Side stereo */ | |
if (s->options.mid_side == -1 && s->coder->search_for_ms) | |
s->coder->search_for_ms(s, cpe); | |
else if (cpe->common_window) | |
memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask)); | |
apply_mid_side_stereo(cpe); | |
} | |
adjust_frame_information(cpe, chans); | |
if (s->options.ltp) { /* LTP */ | |
for (ch = 0; ch < chans; ch++) { | |
sce = &cpe->ch[ch]; | |
s->cur_channel = start_ch + ch; | |
if (s->coder->search_for_ltp) | |
s->coder->search_for_ltp(s, sce, cpe->common_window); | |
if (sce->ics.ltp.present) pred_mode = 1; | |
} | |
s->cur_channel = start_ch; | |
if (s->coder->adjust_common_ltp) | |
s->coder->adjust_common_ltp(s, cpe); | |
} | |
if (chans == 2) { | |
put_bits(&s->pb, 1, cpe->common_window); | |
if (cpe->common_window) { | |
put_ics_info(s, &cpe->ch[0].ics); | |
if (s->coder->encode_main_pred) | |
s->coder->encode_main_pred(s, &cpe->ch[0]); | |
if (s->coder->encode_ltp_info) | |
s->coder->encode_ltp_info(s, &cpe->ch[0], 1); | |
encode_ms_info(&s->pb, cpe); | |
if (cpe->ms_mode) ms_mode = 1; | |
} | |
} | |
for (ch = 0; ch < chans; ch++) { | |
s->cur_channel = start_ch + ch; | |
encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window); | |
} | |
start_ch += chans; | |
} | |
if (avctx->flags & AV_CODEC_FLAG_QSCALE) { | |
/* When using a constant Q-scale, don't mess with lambda */ | |
break; | |
} | |
/* rate control stuff | |
* allow between the nominal bitrate, and what psy's bit reservoir says to target | |
* but drift towards the nominal bitrate always | |
*/ | |
frame_bits = put_bits_count(&s->pb); | |
rate_bits = avctx->bit_rate * 1024 / avctx->sample_rate; | |
rate_bits = FFMIN(rate_bits, 6144 * s->channels - 3); | |
too_many_bits = FFMAX(target_bits, rate_bits); | |
too_many_bits = FFMIN(too_many_bits, 6144 * s->channels - 3); | |
too_few_bits = FFMIN(FFMAX(rate_bits - rate_bits/4, target_bits), too_many_bits); | |
/* When using ABR, be strict (but only for increasing) */ | |
too_few_bits = too_few_bits - too_few_bits/8; | |
too_many_bits = too_many_bits + too_many_bits/2; | |
if ( its == 0 /* for steady-state Q-scale tracking */ | |
|| (its < 5 && (frame_bits < too_few_bits || frame_bits > too_many_bits)) | |
|| frame_bits >= 6144 * s->channels - 3 ) | |
{ | |
float ratio = ((float)rate_bits) / frame_bits; | |
if (frame_bits >= too_few_bits && frame_bits <= too_many_bits) { | |
/* | |
* This path is for steady-state Q-scale tracking | |
* When frame bits fall within the stable range, we still need to adjust | |
* lambda to maintain it like so in a stable fashion (large jumps in lambda | |
* create artifacts and should be avoided), but slowly | |
*/ | |
ratio = sqrtf(sqrtf(ratio)); | |
ratio = av_clipf(ratio, 0.9f, 1.1f); | |
} else { | |
/* Not so fast though */ | |
ratio = sqrtf(ratio); | |
} | |
s->lambda = av_clipf(s->lambda * ratio, FLT_EPSILON, 65536.f); | |
/* Keep iterating if we must reduce and lambda is in the sky */ | |
if (ratio > 0.9f && ratio < 1.1f) { | |
break; | |
} else { | |
if (is_mode || ms_mode || tns_mode || pred_mode) { | |
for (i = 0; i < s->chan_map[0]; i++) { | |
// Must restore coeffs | |
chans = tag == TYPE_CPE ? 2 : 1; | |
cpe = &s->cpe[i]; | |
for (ch = 0; ch < chans; ch++) | |
memcpy(cpe->ch[ch].coeffs, cpe->ch[ch].pcoeffs, sizeof(cpe->ch[ch].coeffs)); | |
} | |
} | |
its++; | |
} | |
} else { | |
break; | |
} | |
} while (1); | |
if (s->options.ltp && s->coder->ltp_insert_new_frame) | |
s->coder->ltp_insert_new_frame(s); | |
put_bits(&s->pb, 3, TYPE_END); | |
flush_put_bits(&s->pb); | |
s->last_frame_pb_count = put_bits_count(&s->pb); | |
avpkt->size = put_bytes_output(&s->pb); | |
s->lambda_sum += s->lambda; | |
s->lambda_count++; | |
ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts, | |
&avpkt->duration); | |
*got_packet_ptr = 1; | |
return 0; | |
} | |
static av_cold int aac_encode_end(AVCodecContext *avctx) | |
{ | |
AACEncContext *s = avctx->priv_data; | |
av_log(avctx, AV_LOG_INFO, "Qavg: %.3f\n", s->lambda_count ? s->lambda_sum / s->lambda_count : NAN); | |
av_tx_uninit(&s->mdct1024); | |
av_tx_uninit(&s->mdct128); | |
ff_psy_end(&s->psy); | |
ff_lpc_end(&s->lpc); | |
if (s->psypp) | |
ff_psy_preprocess_end(s->psypp); | |
av_freep(&s->buffer.samples); | |
av_freep(&s->cpe); | |
av_freep(&s->fdsp); | |
ff_af_queue_close(&s->afq); | |
return 0; | |
} | |
static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s) | |
{ | |
int ret = 0; | |
float scale = 32768.0f; | |
s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); | |
if (!s->fdsp) | |
return AVERROR(ENOMEM); | |
// window init | |
ff_aac_float_common_init(); | |
if ((ret = av_tx_init(&s->mdct1024, &s->mdct1024_fn, AV_TX_FLOAT_MDCT, 0, | |
1024, &scale, 0)) < 0) | |
return ret; | |
if ((ret = av_tx_init(&s->mdct128, &s->mdct128_fn, AV_TX_FLOAT_MDCT, 0, | |
128, &scale, 0)) < 0) | |
return ret; | |
return 0; | |
} | |
static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s) | |
{ | |
int ch; | |
if (!FF_ALLOCZ_TYPED_ARRAY(s->buffer.samples, s->channels * 3 * 1024) || | |
!FF_ALLOCZ_TYPED_ARRAY(s->cpe, s->chan_map[0])) | |
return AVERROR(ENOMEM); | |
for(ch = 0; ch < s->channels; ch++) | |
s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch; | |
return 0; | |
} | |
static av_cold int aac_encode_init(AVCodecContext *avctx) | |
{ | |
AACEncContext *s = avctx->priv_data; | |
int i, ret = 0; | |
const uint8_t *sizes[2]; | |
uint8_t grouping[AAC_MAX_CHANNELS]; | |
int lengths[2]; | |
/* Constants */ | |
s->last_frame_pb_count = 0; | |
avctx->frame_size = 1024; | |
avctx->initial_padding = 1024; | |
s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120; | |
/* Channel map and unspecified bitrate guessing */ | |
s->channels = avctx->ch_layout.nb_channels; | |
s->needs_pce = 1; | |
for (i = 0; i < FF_ARRAY_ELEMS(aac_normal_chan_layouts); i++) { | |
if (!av_channel_layout_compare(&avctx->ch_layout, &aac_normal_chan_layouts[i])) { | |
s->needs_pce = s->options.pce; | |
break; | |
} | |
} | |
if (s->needs_pce) { | |
char buf[64]; | |
for (i = 0; i < FF_ARRAY_ELEMS(aac_pce_configs); i++) | |
if (!av_channel_layout_compare(&avctx->ch_layout, &aac_pce_configs[i].layout)) | |
break; | |
av_channel_layout_describe(&avctx->ch_layout, buf, sizeof(buf)); | |
if (i == FF_ARRAY_ELEMS(aac_pce_configs)) { | |
av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout \"%s\"\n", buf); | |
return AVERROR(EINVAL); | |
} | |
av_log(avctx, AV_LOG_INFO, "Using a PCE to encode channel layout \"%s\"\n", buf); | |
s->pce = aac_pce_configs[i]; | |
s->reorder_map = s->pce.reorder_map; | |
s->chan_map = s->pce.config_map; | |
} else { | |
s->reorder_map = aac_chan_maps[s->channels - 1]; | |
s->chan_map = aac_chan_configs[s->channels - 1]; | |
} | |
if (!avctx->bit_rate) { | |
for (i = 1; i <= s->chan_map[0]; i++) { | |
avctx->bit_rate += s->chan_map[i] == TYPE_CPE ? 128000 : /* Pair */ | |
s->chan_map[i] == TYPE_LFE ? 16000 : /* LFE */ | |
69000 ; /* SCE */ | |
} | |
} | |
/* Samplerate */ | |
for (i = 0; i < 16; i++) | |
if (avctx->sample_rate == ff_mpeg4audio_sample_rates[i]) | |
break; | |
s->samplerate_index = i; | |
ERROR_IF(s->samplerate_index == 16 || | |
s->samplerate_index >= ff_aac_swb_size_1024_len || | |
s->samplerate_index >= ff_aac_swb_size_128_len, | |
"Unsupported sample rate %d\n", avctx->sample_rate); | |
/* Bitrate limiting */ | |
WARN_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels, | |
"Too many bits %f > %d per frame requested, clamping to max\n", | |
1024.0 * avctx->bit_rate / avctx->sample_rate, | |
6144 * s->channels); | |
avctx->bit_rate = (int64_t)FFMIN(6144 * s->channels / 1024.0 * avctx->sample_rate, | |
avctx->bit_rate); | |
/* Profile and option setting */ | |
avctx->profile = avctx->profile == FF_PROFILE_UNKNOWN ? FF_PROFILE_AAC_LOW : | |
avctx->profile; | |
for (i = 0; i < FF_ARRAY_ELEMS(aacenc_profiles); i++) | |
if (avctx->profile == aacenc_profiles[i]) | |
break; | |
if (avctx->profile == FF_PROFILE_MPEG2_AAC_LOW) { | |
avctx->profile = FF_PROFILE_AAC_LOW; | |
ERROR_IF(s->options.pred, | |
"Main prediction unavailable in the \"mpeg2_aac_low\" profile\n"); | |
ERROR_IF(s->options.ltp, | |
"LTP prediction unavailable in the \"mpeg2_aac_low\" profile\n"); | |
WARN_IF(s->options.pns, | |
"PNS unavailable in the \"mpeg2_aac_low\" profile, turning off\n"); | |
s->options.pns = 0; | |
} else if (avctx->profile == FF_PROFILE_AAC_LTP) { | |
s->options.ltp = 1; | |
ERROR_IF(s->options.pred, | |
"Main prediction unavailable in the \"aac_ltp\" profile\n"); | |
} else if (avctx->profile == FF_PROFILE_AAC_MAIN) { | |
s->options.pred = 1; | |
ERROR_IF(s->options.ltp, | |
"LTP prediction unavailable in the \"aac_main\" profile\n"); | |
} else if (s->options.ltp) { | |
avctx->profile = FF_PROFILE_AAC_LTP; | |
WARN_IF(1, | |
"Chainging profile to \"aac_ltp\"\n"); | |
ERROR_IF(s->options.pred, | |
"Main prediction unavailable in the \"aac_ltp\" profile\n"); | |
} else if (s->options.pred) { | |
avctx->profile = FF_PROFILE_AAC_MAIN; | |
WARN_IF(1, | |
"Chainging profile to \"aac_main\"\n"); | |
ERROR_IF(s->options.ltp, | |
"LTP prediction unavailable in the \"aac_main\" profile\n"); | |
} | |
s->profile = avctx->profile; | |
/* Coder limitations */ | |
s->coder = &ff_aac_coders[s->options.coder]; | |
if (s->options.coder == AAC_CODER_ANMR) { | |
ERROR_IF(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL, | |
"The ANMR coder is considered experimental, add -strict -2 to enable!\n"); | |
s->options.intensity_stereo = 0; | |
s->options.pns = 0; | |
} | |
ERROR_IF(s->options.ltp && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL, | |
"The LPT profile requires experimental compliance, add -strict -2 to enable!\n"); | |
/* M/S introduces horrible artifacts with multichannel files, this is temporary */ | |
if (s->channels > 3) | |
s->options.mid_side = 0; | |
if ((ret = dsp_init(avctx, s)) < 0) | |
return ret; | |
if ((ret = alloc_buffers(avctx, s)) < 0) | |
return ret; | |
if ((ret = put_audio_specific_config(avctx))) | |
return ret; | |
sizes[0] = ff_aac_swb_size_1024[s->samplerate_index]; | |
sizes[1] = ff_aac_swb_size_128[s->samplerate_index]; | |
lengths[0] = ff_aac_num_swb_1024[s->samplerate_index]; | |
lengths[1] = ff_aac_num_swb_128[s->samplerate_index]; | |
for (i = 0; i < s->chan_map[0]; i++) | |
grouping[i] = s->chan_map[i + 1] == TYPE_CPE; | |
if ((ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths, | |
s->chan_map[0], grouping)) < 0) | |
return ret; | |
s->psypp = ff_psy_preprocess_init(avctx); | |
ff_lpc_init(&s->lpc, 2*avctx->frame_size, TNS_MAX_ORDER, FF_LPC_TYPE_LEVINSON); | |
s->random_state = 0x1f2e3d4c; | |
s->abs_pow34 = abs_pow34_v; | |
s->quant_bands = quantize_bands; | |
ff_aac_dsp_init_x86(s); | |
ff_aac_coder_init_mips(s); | |
ff_af_queue_init(avctx, &s->afq); | |
ff_aac_tableinit(); | |
return 0; | |
} | |
static const AVOption aacenc_options[] = { | |
{"aac_coder", "Coding algorithm", offsetof(AACEncContext, options.coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, 0, AAC_CODER_NB-1, AACENC_FLAGS, "coder"}, | |
{"anmr", "ANMR method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"}, | |
{"twoloop", "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"}, | |
{"fast", "Default fast search", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"}, | |
{"aac_ms", "Force M/S stereo coding", offsetof(AACEncContext, options.mid_side), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, AACENC_FLAGS}, | |
{"aac_is", "Intensity stereo coding", offsetof(AACEncContext, options.intensity_stereo), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS}, | |
{"aac_pns", "Perceptual noise substitution", offsetof(AACEncContext, options.pns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS}, | |
{"aac_tns", "Temporal noise shaping", offsetof(AACEncContext, options.tns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS}, | |
{"aac_ltp", "Long term prediction", offsetof(AACEncContext, options.ltp), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS}, | |
{"aac_pred", "AAC-Main prediction", offsetof(AACEncContext, options.pred), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS}, | |
{"aac_pce", "Forces the use of PCEs", offsetof(AACEncContext, options.pce), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS}, | |
FF_AAC_PROFILE_OPTS | |
{NULL} | |
}; | |
static const AVClass aacenc_class = { | |
.class_name = "AAC encoder", | |
.item_name = av_default_item_name, | |
.option = aacenc_options, | |
.version = LIBAVUTIL_VERSION_INT, | |
}; | |
static const FFCodecDefault aac_encode_defaults[] = { | |
{ "b", "0" }, | |
{ NULL } | |
}; | |
const FFCodec ff_aac_encoder = { | |
.p.name = "aac", | |
CODEC_LONG_NAME("AAC (Advanced Audio Coding)"), | |
.p.type = AVMEDIA_TYPE_AUDIO, | |
.p.id = AV_CODEC_ID_AAC, | |
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | | |
AV_CODEC_CAP_SMALL_LAST_FRAME, | |
.priv_data_size = sizeof(AACEncContext), | |
.init = aac_encode_init, | |
FF_CODEC_ENCODE_CB(aac_encode_frame), | |
.close = aac_encode_end, | |
.defaults = aac_encode_defaults, | |
.p.supported_samplerates = ff_mpeg4audio_sample_rates, | |
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, | |
.p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP, | |
AV_SAMPLE_FMT_NONE }, | |
.p.priv_class = &aacenc_class, | |
}; | |