Spaces:
Runtime error
Runtime error
/* | |
* AAC coefficients encoder | |
* Copyright (C) 2008-2009 Konstantin Shishkov | |
* | |
* This file is part of FFmpeg. | |
* | |
* FFmpeg is free software; you can redistribute it and/or | |
* modify it under the terms of the GNU Lesser General Public | |
* License as published by the Free Software Foundation; either | |
* version 2.1 of the License, or (at your option) any later version. | |
* | |
* FFmpeg is distributed in the hope that it will be useful, | |
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
* Lesser General Public License for more details. | |
* | |
* You should have received a copy of the GNU Lesser General Public | |
* License along with FFmpeg; if not, write to the Free Software | |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
*/ | |
/** | |
* @file | |
* AAC coefficients encoder | |
*/ | |
/*********************************** | |
* TODOs: | |
* speedup quantizer selection | |
* add sane pulse detection | |
***********************************/ | |
/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread | |
* beyond which no PNS is used (since the SFBs contain tone rather than noise) */ | |
/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to | |
* replace low energy non zero bands */ | |
typedef float (*quantize_and_encode_band_func)(struct AACEncContext *s, PutBitContext *pb, | |
const float *in, float *quant, const float *scaled, | |
int size, int scale_idx, int cb, | |
const float lambda, const float uplim, | |
int *bits, float *energy); | |
/** | |
* Calculate rate distortion cost for quantizing with given codebook | |
* | |
* @return quantization distortion | |
*/ | |
static av_always_inline float quantize_and_encode_band_cost_template( | |
struct AACEncContext *s, | |
PutBitContext *pb, const float *in, float *out, | |
const float *scaled, int size, int scale_idx, | |
int cb, const float lambda, const float uplim, | |
int *bits, float *energy, int BT_ZERO, int BT_UNSIGNED, | |
int BT_PAIR, int BT_ESC, int BT_NOISE, int BT_STEREO, | |
const float ROUNDING) | |
{ | |
const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512; | |
const float Q = ff_aac_pow2sf_tab [q_idx]; | |
const float Q34 = ff_aac_pow34sf_tab[q_idx]; | |
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; | |
const float CLIPPED_ESCAPE = 165140.0f*IQ; | |
float cost = 0; | |
float qenergy = 0; | |
const int dim = BT_PAIR ? 2 : 4; | |
int resbits = 0; | |
int off; | |
if (BT_ZERO || BT_NOISE || BT_STEREO) { | |
for (int i = 0; i < size; i++) | |
cost += in[i]*in[i]; | |
if (bits) | |
*bits = 0; | |
if (energy) | |
*energy = qenergy; | |
if (out) { | |
for (int i = 0; i < size; i += dim) | |
for (int j = 0; j < dim; j++) | |
out[i+j] = 0.0f; | |
} | |
return cost * lambda; | |
} | |
if (!scaled) { | |
s->abs_pow34(s->scoefs, in, size); | |
scaled = s->scoefs; | |
} | |
s->quant_bands(s->qcoefs, in, scaled, size, !BT_UNSIGNED, aac_cb_maxval[cb], Q34, ROUNDING); | |
if (BT_UNSIGNED) { | |
off = 0; | |
} else { | |
off = aac_cb_maxval[cb]; | |
} | |
for (int i = 0; i < size; i += dim) { | |
const float *vec; | |
int *quants = s->qcoefs + i; | |
int curidx = 0; | |
int curbits; | |
float quantized, rd = 0.0f; | |
for (int j = 0; j < dim; j++) { | |
curidx *= aac_cb_range[cb]; | |
curidx += quants[j] + off; | |
} | |
curbits = ff_aac_spectral_bits[cb-1][curidx]; | |
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; | |
if (BT_UNSIGNED) { | |
for (int j = 0; j < dim; j++) { | |
float t = fabsf(in[i+j]); | |
float di; | |
if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow | |
if (t >= CLIPPED_ESCAPE) { | |
quantized = CLIPPED_ESCAPE; | |
curbits += 21; | |
} else { | |
int c = av_clip_uintp2(quant(t, Q, ROUNDING), 13); | |
quantized = c*cbrtf(c)*IQ; | |
curbits += av_log2(c)*2 - 4 + 1; | |
} | |
} else { | |
quantized = vec[j]*IQ; | |
} | |
di = t - quantized; | |
if (out) | |
out[i+j] = in[i+j] >= 0 ? quantized : -quantized; | |
if (vec[j] != 0.0f) | |
curbits++; | |
qenergy += quantized*quantized; | |
rd += di*di; | |
} | |
} else { | |
for (int j = 0; j < dim; j++) { | |
quantized = vec[j]*IQ; | |
qenergy += quantized*quantized; | |
if (out) | |
out[i+j] = quantized; | |
rd += (in[i+j] - quantized)*(in[i+j] - quantized); | |
} | |
} | |
cost += rd * lambda + curbits; | |
resbits += curbits; | |
if (cost >= uplim) | |
return uplim; | |
if (pb) { | |
put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]); | |
if (BT_UNSIGNED) | |
for (int j = 0; j < dim; j++) | |
if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f) | |
put_bits(pb, 1, in[i+j] < 0.0f); | |
if (BT_ESC) { | |
for (int j = 0; j < 2; j++) { | |
if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) { | |
int coef = av_clip_uintp2(quant(fabsf(in[i+j]), Q, ROUNDING), 13); | |
int len = av_log2(coef); | |
put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); | |
put_sbits(pb, len, coef); | |
} | |
} | |
} | |
} | |
} | |
if (bits) | |
*bits = resbits; | |
if (energy) | |
*energy = qenergy; | |
return cost; | |
} | |
static inline float quantize_and_encode_band_cost_NONE(struct AACEncContext *s, PutBitContext *pb, | |
const float *in, float *quant, const float *scaled, | |
int size, int scale_idx, int cb, | |
const float lambda, const float uplim, | |
int *bits, float *energy) { | |
av_assert0(0); | |
return 0.0f; | |
} | |
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0, 0, 0, ROUND_STANDARD) | |
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0, 0, 0, ROUND_STANDARD) | |
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0, 0, 0, ROUND_STANDARD) | |
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0, 0, 0, ROUND_STANDARD) | |
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0, 0, 0, ROUND_STANDARD) | |
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1, 0, 0, ROUND_STANDARD) | |
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC_RTZ, 0, 1, 1, 1, 0, 0, ROUND_TO_ZERO) | |
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NOISE, 0, 0, 0, 0, 1, 0, ROUND_STANDARD) | |
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(STEREO,0, 0, 0, 0, 0, 1, ROUND_STANDARD) | |
static const quantize_and_encode_band_func quantize_and_encode_band_cost_arr[] = | |
{ | |
quantize_and_encode_band_cost_ZERO, | |
quantize_and_encode_band_cost_SQUAD, | |
quantize_and_encode_band_cost_SQUAD, | |
quantize_and_encode_band_cost_UQUAD, | |
quantize_and_encode_band_cost_UQUAD, | |
quantize_and_encode_band_cost_SPAIR, | |
quantize_and_encode_band_cost_SPAIR, | |
quantize_and_encode_band_cost_UPAIR, | |
quantize_and_encode_band_cost_UPAIR, | |
quantize_and_encode_band_cost_UPAIR, | |
quantize_and_encode_band_cost_UPAIR, | |
quantize_and_encode_band_cost_ESC, | |
quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */ | |
quantize_and_encode_band_cost_NOISE, | |
quantize_and_encode_band_cost_STEREO, | |
quantize_and_encode_band_cost_STEREO, | |
}; | |
static const quantize_and_encode_band_func quantize_and_encode_band_cost_rtz_arr[] = | |
{ | |
quantize_and_encode_band_cost_ZERO, | |
quantize_and_encode_band_cost_SQUAD, | |
quantize_and_encode_band_cost_SQUAD, | |
quantize_and_encode_band_cost_UQUAD, | |
quantize_and_encode_band_cost_UQUAD, | |
quantize_and_encode_band_cost_SPAIR, | |
quantize_and_encode_band_cost_SPAIR, | |
quantize_and_encode_band_cost_UPAIR, | |
quantize_and_encode_band_cost_UPAIR, | |
quantize_and_encode_band_cost_UPAIR, | |
quantize_and_encode_band_cost_UPAIR, | |
quantize_and_encode_band_cost_ESC_RTZ, | |
quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */ | |
quantize_and_encode_band_cost_NOISE, | |
quantize_and_encode_band_cost_STEREO, | |
quantize_and_encode_band_cost_STEREO, | |
}; | |
float ff_quantize_and_encode_band_cost(struct AACEncContext *s, PutBitContext *pb, | |
const float *in, float *quant, const float *scaled, | |
int size, int scale_idx, int cb, | |
const float lambda, const float uplim, | |
int *bits, float *energy) | |
{ | |
return quantize_and_encode_band_cost_arr[cb](s, pb, in, quant, scaled, size, | |
scale_idx, cb, lambda, uplim, | |
bits, energy); | |
} | |
static inline void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, | |
const float *in, float *out, int size, int scale_idx, | |
int cb, const float lambda, int rtz) | |
{ | |
(rtz ? quantize_and_encode_band_cost_rtz_arr : quantize_and_encode_band_cost_arr)[cb](s, pb, in, out, NULL, size, scale_idx, cb, | |
lambda, INFINITY, NULL, NULL); | |
} | |
/** | |
* structure used in optimal codebook search | |
*/ | |
typedef struct BandCodingPath { | |
int prev_idx; ///< pointer to the previous path point | |
float cost; ///< path cost | |
int run; | |
} BandCodingPath; | |
/** | |
* Encode band info for single window group bands. | |
*/ | |
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce, | |
int win, int group_len, const float lambda) | |
{ | |
BandCodingPath path[120][CB_TOT_ALL]; | |
int w, swb, cb, start, size; | |
int i, j; | |
const int max_sfb = sce->ics.max_sfb; | |
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; | |
const int run_esc = (1 << run_bits) - 1; | |
int idx, ppos, count; | |
int stackrun[120], stackcb[120], stack_len; | |
float next_minrd = INFINITY; | |
int next_mincb = 0; | |
s->abs_pow34(s->scoefs, sce->coeffs, 1024); | |
start = win*128; | |
for (cb = 0; cb < CB_TOT_ALL; cb++) { | |
path[0][cb].cost = 0.0f; | |
path[0][cb].prev_idx = -1; | |
path[0][cb].run = 0; | |
} | |
for (swb = 0; swb < max_sfb; swb++) { | |
size = sce->ics.swb_sizes[swb]; | |
if (sce->zeroes[win*16 + swb]) { | |
for (cb = 0; cb < CB_TOT_ALL; cb++) { | |
path[swb+1][cb].prev_idx = cb; | |
path[swb+1][cb].cost = path[swb][cb].cost; | |
path[swb+1][cb].run = path[swb][cb].run + 1; | |
} | |
} else { | |
float minrd = next_minrd; | |
int mincb = next_mincb; | |
next_minrd = INFINITY; | |
next_mincb = 0; | |
for (cb = 0; cb < CB_TOT_ALL; cb++) { | |
float cost_stay_here, cost_get_here; | |
float rd = 0.0f; | |
if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] || | |
cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) { | |
path[swb+1][cb].prev_idx = -1; | |
path[swb+1][cb].cost = INFINITY; | |
path[swb+1][cb].run = path[swb][cb].run + 1; | |
continue; | |
} | |
for (w = 0; w < group_len; w++) { | |
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb]; | |
rd += quantize_band_cost(s, &sce->coeffs[start + w*128], | |
&s->scoefs[start + w*128], size, | |
sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb], | |
lambda / band->threshold, INFINITY, NULL, NULL); | |
} | |
cost_stay_here = path[swb][cb].cost + rd; | |
cost_get_here = minrd + rd + run_bits + 4; | |
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] | |
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1]) | |
cost_stay_here += run_bits; | |
if (cost_get_here < cost_stay_here) { | |
path[swb+1][cb].prev_idx = mincb; | |
path[swb+1][cb].cost = cost_get_here; | |
path[swb+1][cb].run = 1; | |
} else { | |
path[swb+1][cb].prev_idx = cb; | |
path[swb+1][cb].cost = cost_stay_here; | |
path[swb+1][cb].run = path[swb][cb].run + 1; | |
} | |
if (path[swb+1][cb].cost < next_minrd) { | |
next_minrd = path[swb+1][cb].cost; | |
next_mincb = cb; | |
} | |
} | |
} | |
start += sce->ics.swb_sizes[swb]; | |
} | |
//convert resulting path from backward-linked list | |
stack_len = 0; | |
idx = 0; | |
for (cb = 1; cb < CB_TOT_ALL; cb++) | |
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost) | |
idx = cb; | |
ppos = max_sfb; | |
while (ppos > 0) { | |
av_assert1(idx >= 0); | |
cb = idx; | |
stackrun[stack_len] = path[ppos][cb].run; | |
stackcb [stack_len] = cb; | |
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx; | |
ppos -= path[ppos][cb].run; | |
stack_len++; | |
} | |
//perform actual band info encoding | |
start = 0; | |
for (i = stack_len - 1; i >= 0; i--) { | |
cb = aac_cb_out_map[stackcb[i]]; | |
put_bits(&s->pb, 4, cb); | |
count = stackrun[i]; | |
memset(sce->zeroes + win*16 + start, !cb, count); | |
//XXX: memset when band_type is also uint8_t | |
for (j = 0; j < count; j++) { | |
sce->band_type[win*16 + start] = cb; | |
start++; | |
} | |
while (count >= run_esc) { | |
put_bits(&s->pb, run_bits, run_esc); | |
count -= run_esc; | |
} | |
put_bits(&s->pb, run_bits, count); | |
} | |
} | |
typedef struct TrellisPath { | |
float cost; | |
int prev; | |
} TrellisPath; | |
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce) | |
{ | |
int w, g; | |
int prevscaler_n = -255, prevscaler_i = 0; | |
int bands = 0; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
if (sce->zeroes[w*16+g]) | |
continue; | |
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) { | |
sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100); | |
bands++; | |
} else if (sce->band_type[w*16+g] == NOISE_BT) { | |
sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155); | |
if (prevscaler_n == -255) | |
prevscaler_n = sce->sf_idx[w*16+g]; | |
bands++; | |
} | |
} | |
} | |
if (!bands) | |
return; | |
/* Clip the scalefactor indices */ | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
if (sce->zeroes[w*16+g]) | |
continue; | |
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) { | |
sce->sf_idx[w*16+g] = prevscaler_i = av_clip(sce->sf_idx[w*16+g], prevscaler_i - SCALE_MAX_DIFF, prevscaler_i + SCALE_MAX_DIFF); | |
} else if (sce->band_type[w*16+g] == NOISE_BT) { | |
sce->sf_idx[w*16+g] = prevscaler_n = av_clip(sce->sf_idx[w*16+g], prevscaler_n - SCALE_MAX_DIFF, prevscaler_n + SCALE_MAX_DIFF); | |
} | |
} | |
} | |
} | |
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, | |
SingleChannelElement *sce, | |
const float lambda) | |
{ | |
int q, w, w2, g, start = 0; | |
int i, j; | |
int idx; | |
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES]; | |
int bandaddr[TRELLIS_STAGES]; | |
int minq; | |
float mincost; | |
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f; | |
int q0, q1, qcnt = 0; | |
for (i = 0; i < 1024; i++) { | |
float t = fabsf(sce->coeffs[i]); | |
if (t > 0.0f) { | |
q0f = FFMIN(q0f, t); | |
q1f = FFMAX(q1f, t); | |
qnrgf += t*t; | |
qcnt++; | |
} | |
} | |
if (!qcnt) { | |
memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); | |
memset(sce->zeroes, 1, sizeof(sce->zeroes)); | |
return; | |
} | |
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped | |
q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1); | |
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero | |
q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS); | |
if (q1 - q0 > 60) { | |
int q0low = q0; | |
int q1high = q1; | |
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped | |
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512); | |
q1 = qnrg + 30; | |
q0 = qnrg - 30; | |
if (q0 < q0low) { | |
q1 += q0low - q0; | |
q0 = q0low; | |
} else if (q1 > q1high) { | |
q0 -= q1 - q1high; | |
q1 = q1high; | |
} | |
} | |
// q0 == q1 isn't really a legal situation | |
if (q0 == q1) { | |
// the following is indirect but guarantees q1 != q0 && q1 near q0 | |
q1 = av_clip(q0+1, 1, SCALE_MAX_POS); | |
q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1); | |
} | |
for (i = 0; i < TRELLIS_STATES; i++) { | |
paths[0][i].cost = 0.0f; | |
paths[0][i].prev = -1; | |
} | |
for (j = 1; j < TRELLIS_STAGES; j++) { | |
for (i = 0; i < TRELLIS_STATES; i++) { | |
paths[j][i].cost = INFINITY; | |
paths[j][i].prev = -2; | |
} | |
} | |
idx = 1; | |
s->abs_pow34(s->scoefs, sce->coeffs, 1024); | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
start = w*128; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
const float *coefs = &sce->coeffs[start]; | |
float qmin, qmax; | |
int nz = 0; | |
bandaddr[idx] = w * 16 + g; | |
qmin = INT_MAX; | |
qmax = 0.0f; | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; | |
if (band->energy <= band->threshold || band->threshold == 0.0f) { | |
sce->zeroes[(w+w2)*16+g] = 1; | |
continue; | |
} | |
sce->zeroes[(w+w2)*16+g] = 0; | |
nz = 1; | |
for (i = 0; i < sce->ics.swb_sizes[g]; i++) { | |
float t = fabsf(coefs[w2*128+i]); | |
if (t > 0.0f) | |
qmin = FFMIN(qmin, t); | |
qmax = FFMAX(qmax, t); | |
} | |
} | |
if (nz) { | |
int minscale, maxscale; | |
float minrd = INFINITY; | |
float maxval; | |
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped | |
minscale = coef2minsf(qmin); | |
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero | |
maxscale = coef2maxsf(qmax); | |
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1); | |
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES); | |
if (minscale == maxscale) { | |
maxscale = av_clip(minscale+1, 1, TRELLIS_STATES); | |
minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1); | |
} | |
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start); | |
for (q = minscale; q < maxscale; q++) { | |
float dist = 0; | |
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]); | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; | |
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], | |
q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL); | |
} | |
minrd = FFMIN(minrd, dist); | |
for (i = 0; i < q1 - q0; i++) { | |
float cost; | |
cost = paths[idx - 1][i].cost + dist | |
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; | |
if (cost < paths[idx][q].cost) { | |
paths[idx][q].cost = cost; | |
paths[idx][q].prev = i; | |
} | |
} | |
} | |
} else { | |
for (q = 0; q < q1 - q0; q++) { | |
paths[idx][q].cost = paths[idx - 1][q].cost + 1; | |
paths[idx][q].prev = q; | |
} | |
} | |
sce->zeroes[w*16+g] = !nz; | |
start += sce->ics.swb_sizes[g]; | |
idx++; | |
} | |
} | |
idx--; | |
mincost = paths[idx][0].cost; | |
minq = 0; | |
for (i = 1; i < TRELLIS_STATES; i++) { | |
if (paths[idx][i].cost < mincost) { | |
mincost = paths[idx][i].cost; | |
minq = i; | |
} | |
} | |
while (idx) { | |
sce->sf_idx[bandaddr[idx]] = minq + q0; | |
minq = FFMAX(paths[idx][minq].prev, 0); | |
idx--; | |
} | |
//set the same quantizers inside window groups | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) | |
for (g = 0; g < sce->ics.num_swb; g++) | |
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++) | |
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; | |
} | |
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, | |
SingleChannelElement *sce, | |
const float lambda) | |
{ | |
int start = 0, i, w, w2, g; | |
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->ch_layout.nb_channels * (lambda / 120.f); | |
float dists[128] = { 0 }, uplims[128] = { 0 }; | |
float maxvals[128]; | |
int fflag, minscaler; | |
int its = 0; | |
int allz = 0; | |
float minthr = INFINITY; | |
// for values above this the decoder might end up in an endless loop | |
// due to always having more bits than what can be encoded. | |
destbits = FFMIN(destbits, 5800); | |
//some heuristic to determine initial quantizers will reduce search time | |
//determine zero bands and upper limits | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
start = 0; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
int nz = 0; | |
float uplim = 0.0f; | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; | |
uplim += band->threshold; | |
if (band->energy <= band->threshold || band->threshold == 0.0f) { | |
sce->zeroes[(w+w2)*16+g] = 1; | |
continue; | |
} | |
nz = 1; | |
} | |
uplims[w*16+g] = uplim *512; | |
sce->band_type[w*16+g] = 0; | |
sce->zeroes[w*16+g] = !nz; | |
if (nz) | |
minthr = FFMIN(minthr, uplim); | |
allz |= nz; | |
start += sce->ics.swb_sizes[g]; | |
} | |
} | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
if (sce->zeroes[w*16+g]) { | |
sce->sf_idx[w*16+g] = SCALE_ONE_POS; | |
continue; | |
} | |
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59); | |
} | |
} | |
if (!allz) | |
return; | |
s->abs_pow34(s->scoefs, sce->coeffs, 1024); | |
ff_quantize_band_cost_cache_init(s); | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
start = w*128; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
const float *scaled = s->scoefs + start; | |
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); | |
start += sce->ics.swb_sizes[g]; | |
} | |
} | |
//perform two-loop search | |
//outer loop - improve quality | |
do { | |
int tbits, qstep; | |
minscaler = sce->sf_idx[0]; | |
//inner loop - quantize spectrum to fit into given number of bits | |
qstep = its ? 1 : 32; | |
do { | |
int prev = -1; | |
tbits = 0; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
start = w*128; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
const float *coefs = sce->coeffs + start; | |
const float *scaled = s->scoefs + start; | |
int bits = 0; | |
int cb; | |
float dist = 0.0f; | |
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { | |
start += sce->ics.swb_sizes[g]; | |
continue; | |
} | |
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); | |
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
int b; | |
dist += quantize_band_cost_cached(s, w + w2, g, | |
coefs + w2*128, | |
scaled + w2*128, | |
sce->ics.swb_sizes[g], | |
sce->sf_idx[w*16+g], | |
cb, 1.0f, INFINITY, | |
&b, NULL, 0); | |
bits += b; | |
} | |
dists[w*16+g] = dist - bits; | |
if (prev != -1) { | |
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; | |
} | |
tbits += bits; | |
start += sce->ics.swb_sizes[g]; | |
prev = sce->sf_idx[w*16+g]; | |
} | |
} | |
if (tbits > destbits) { | |
for (i = 0; i < 128; i++) | |
if (sce->sf_idx[i] < 218 - qstep) | |
sce->sf_idx[i] += qstep; | |
} else { | |
for (i = 0; i < 128; i++) | |
if (sce->sf_idx[i] > 60 - qstep) | |
sce->sf_idx[i] -= qstep; | |
} | |
qstep >>= 1; | |
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217) | |
qstep = 1; | |
} while (qstep); | |
fflag = 0; | |
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
int prevsc = sce->sf_idx[w*16+g]; | |
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) { | |
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1)) | |
sce->sf_idx[w*16+g]--; | |
else //Try to make sure there is some energy in every band | |
sce->sf_idx[w*16+g]-=2; | |
} | |
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); | |
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); | |
if (sce->sf_idx[w*16+g] != prevsc) | |
fflag = 1; | |
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); | |
} | |
} | |
its++; | |
} while (fflag && its < 10); | |
} | |
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce) | |
{ | |
FFPsyBand *band; | |
int w, g, w2, i; | |
int wlen = 1024 / sce->ics.num_windows; | |
int bandwidth, cutoff; | |
float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128]; | |
float *NOR34 = &s->scoefs[3*128]; | |
uint8_t nextband[128]; | |
const float lambda = s->lambda; | |
const float freq_mult = avctx->sample_rate*0.5f/wlen; | |
const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda); | |
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f)); | |
const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f); | |
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f); | |
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate | |
/ ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels) | |
* (lambda / 120.f); | |
/** Keep this in sync with twoloop's cutoff selection */ | |
float rate_bandwidth_multiplier = 1.5f; | |
int prev = -1000, prev_sf = -1; | |
int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE) | |
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) | |
: (avctx->bit_rate / avctx->ch_layout.nb_channels); | |
frame_bit_rate *= 1.15f; | |
if (avctx->cutoff > 0) { | |
bandwidth = avctx->cutoff; | |
} else { | |
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); | |
} | |
cutoff = bandwidth * 2 * wlen / avctx->sample_rate; | |
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); | |
ff_init_nextband_map(sce, nextband); | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
int wstart = w*128; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
int noise_sfi; | |
float dist1 = 0.0f, dist2 = 0.0f, noise_amp; | |
float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh; | |
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f; | |
float min_energy = -1.0f, max_energy = 0.0f; | |
const int start = wstart+sce->ics.swb_offset[g]; | |
const float freq = (start-wstart)*freq_mult; | |
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f); | |
if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) { | |
if (!sce->zeroes[w*16+g]) | |
prev_sf = sce->sf_idx[w*16+g]; | |
continue; | |
} | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; | |
sfb_energy += band->energy; | |
spread = FFMIN(spread, band->spread); | |
threshold += band->threshold; | |
if (!w2) { | |
min_energy = max_energy = band->energy; | |
} else { | |
min_energy = FFMIN(min_energy, band->energy); | |
max_energy = FFMAX(max_energy, band->energy); | |
} | |
} | |
/* Ramps down at ~8000Hz and loosens the dist threshold */ | |
dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias; | |
/* PNS is acceptable when all of these are true: | |
* 1. high spread energy (noise-like band) | |
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed) | |
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS) | |
* | |
* At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important) | |
*/ | |
if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) || | |
((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold || | |
(!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) || | |
min_energy < pns_transient_energy_r * max_energy ) { | |
sce->pns_ener[w*16+g] = sfb_energy; | |
if (!sce->zeroes[w*16+g]) | |
prev_sf = sce->sf_idx[w*16+g]; | |
continue; | |
} | |
pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread); | |
noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */ | |
noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */ | |
if (prev != -1000) { | |
int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO; | |
if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) { | |
if (!sce->zeroes[w*16+g]) | |
prev_sf = sce->sf_idx[w*16+g]; | |
continue; | |
} | |
} | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
float band_energy, scale, pns_senergy; | |
const int start_c = (w+w2)*128+sce->ics.swb_offset[g]; | |
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; | |
for (i = 0; i < sce->ics.swb_sizes[g]; i++) { | |
s->random_state = lcg_random(s->random_state); | |
PNS[i] = s->random_state; | |
} | |
band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]); | |
scale = noise_amp/sqrtf(band_energy); | |
s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]); | |
pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]); | |
pns_energy += pns_senergy; | |
s->abs_pow34(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]); | |
s->abs_pow34(PNS34, PNS, sce->ics.swb_sizes[g]); | |
dist1 += quantize_band_cost(s, &sce->coeffs[start_c], | |
NOR34, | |
sce->ics.swb_sizes[g], | |
sce->sf_idx[(w+w2)*16+g], | |
sce->band_alt[(w+w2)*16+g], | |
lambda/band->threshold, INFINITY, NULL, NULL); | |
/* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */ | |
dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold; | |
} | |
if (g && sce->band_type[w*16+g-1] == NOISE_BT) { | |
dist2 += 5; | |
} else { | |
dist2 += 9; | |
} | |
energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */ | |
sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy; | |
if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) { | |
sce->band_type[w*16+g] = NOISE_BT; | |
sce->zeroes[w*16+g] = 0; | |
prev = noise_sfi; | |
} else { | |
if (!sce->zeroes[w*16+g]) | |
prev_sf = sce->sf_idx[w*16+g]; | |
} | |
} | |
} | |
} | |
static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce) | |
{ | |
FFPsyBand *band; | |
int w, g, w2; | |
int wlen = 1024 / sce->ics.num_windows; | |
int bandwidth, cutoff; | |
const float lambda = s->lambda; | |
const float freq_mult = avctx->sample_rate*0.5f/wlen; | |
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f)); | |
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f); | |
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate | |
/ ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels) | |
* (lambda / 120.f); | |
/** Keep this in sync with twoloop's cutoff selection */ | |
float rate_bandwidth_multiplier = 1.5f; | |
int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE) | |
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) | |
: (avctx->bit_rate / avctx->ch_layout.nb_channels); | |
frame_bit_rate *= 1.15f; | |
if (avctx->cutoff > 0) { | |
bandwidth = avctx->cutoff; | |
} else { | |
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); | |
} | |
cutoff = bandwidth * 2 * wlen / avctx->sample_rate; | |
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f; | |
float min_energy = -1.0f, max_energy = 0.0f; | |
const int start = sce->ics.swb_offset[g]; | |
const float freq = start*freq_mult; | |
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f); | |
if (freq < NOISE_LOW_LIMIT || start >= cutoff) { | |
sce->can_pns[w*16+g] = 0; | |
continue; | |
} | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; | |
sfb_energy += band->energy; | |
spread = FFMIN(spread, band->spread); | |
threshold += band->threshold; | |
if (!w2) { | |
min_energy = max_energy = band->energy; | |
} else { | |
min_energy = FFMIN(min_energy, band->energy); | |
max_energy = FFMAX(max_energy, band->energy); | |
} | |
} | |
/* PNS is acceptable when all of these are true: | |
* 1. high spread energy (noise-like band) | |
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed) | |
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS) | |
*/ | |
sce->pns_ener[w*16+g] = sfb_energy; | |
if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) { | |
sce->can_pns[w*16+g] = 0; | |
} else { | |
sce->can_pns[w*16+g] = 1; | |
} | |
} | |
} | |
} | |
static void search_for_ms(AACEncContext *s, ChannelElement *cpe) | |
{ | |
int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side; | |
uint8_t nextband0[128], nextband1[128]; | |
float *M = s->scoefs + 128*0, *S = s->scoefs + 128*1; | |
float *L34 = s->scoefs + 128*2, *R34 = s->scoefs + 128*3; | |
float *M34 = s->scoefs + 128*4, *S34 = s->scoefs + 128*5; | |
const float lambda = s->lambda; | |
const float mslambda = FFMIN(1.0f, lambda / 120.f); | |
SingleChannelElement *sce0 = &cpe->ch[0]; | |
SingleChannelElement *sce1 = &cpe->ch[1]; | |
if (!cpe->common_window) | |
return; | |
/** Scout out next nonzero bands */ | |
ff_init_nextband_map(sce0, nextband0); | |
ff_init_nextband_map(sce1, nextband1); | |
prev_mid = sce0->sf_idx[0]; | |
prev_side = sce1->sf_idx[0]; | |
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { | |
start = 0; | |
for (g = 0; g < sce0->ics.num_swb; g++) { | |
float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f; | |
if (!cpe->is_mask[w*16+g]) | |
cpe->ms_mask[w*16+g] = 0; | |
if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g]) { | |
float Mmax = 0.0f, Smax = 0.0f; | |
/* Must compute mid/side SF and book for the whole window group */ | |
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { | |
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { | |
M[i] = (sce0->coeffs[start+(w+w2)*128+i] | |
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5; | |
S[i] = M[i] | |
- sce1->coeffs[start+(w+w2)*128+i]; | |
} | |
s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]); | |
s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]); | |
for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) { | |
Mmax = FFMAX(Mmax, M34[i]); | |
Smax = FFMAX(Smax, S34[i]); | |
} | |
} | |
for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) { | |
float dist1 = 0.0f, dist2 = 0.0f; | |
int B0 = 0, B1 = 0; | |
int minidx; | |
int mididx, sididx; | |
int midcb, sidcb; | |
minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]); | |
mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512); | |
sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512); | |
if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT | |
&& ( !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g) | |
|| !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) { | |
/* scalefactor range violation, bad stuff, will decrease quality unacceptably */ | |
continue; | |
} | |
midcb = find_min_book(Mmax, mididx); | |
sidcb = find_min_book(Smax, sididx); | |
/* No CB can be zero */ | |
midcb = FFMAX(1,midcb); | |
sidcb = FFMAX(1,sidcb); | |
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { | |
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g]; | |
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g]; | |
float minthr = FFMIN(band0->threshold, band1->threshold); | |
int b1,b2,b3,b4; | |
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { | |
M[i] = (sce0->coeffs[start+(w+w2)*128+i] | |
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5; | |
S[i] = M[i] | |
- sce1->coeffs[start+(w+w2)*128+i]; | |
} | |
s->abs_pow34(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); | |
s->abs_pow34(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); | |
s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]); | |
s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]); | |
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128], | |
L34, | |
sce0->ics.swb_sizes[g], | |
sce0->sf_idx[w*16+g], | |
sce0->band_type[w*16+g], | |
lambda / (band0->threshold + FLT_MIN), INFINITY, &b1, NULL); | |
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128], | |
R34, | |
sce1->ics.swb_sizes[g], | |
sce1->sf_idx[w*16+g], | |
sce1->band_type[w*16+g], | |
lambda / (band1->threshold + FLT_MIN), INFINITY, &b2, NULL); | |
dist2 += quantize_band_cost(s, M, | |
M34, | |
sce0->ics.swb_sizes[g], | |
mididx, | |
midcb, | |
lambda / (minthr + FLT_MIN), INFINITY, &b3, NULL); | |
dist2 += quantize_band_cost(s, S, | |
S34, | |
sce1->ics.swb_sizes[g], | |
sididx, | |
sidcb, | |
mslambda / (minthr * bmax + FLT_MIN), INFINITY, &b4, NULL); | |
B0 += b1+b2; | |
B1 += b3+b4; | |
dist1 -= b1+b2; | |
dist2 -= b3+b4; | |
} | |
cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0; | |
if (cpe->ms_mask[w*16+g]) { | |
if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) { | |
sce0->sf_idx[w*16+g] = mididx; | |
sce1->sf_idx[w*16+g] = sididx; | |
sce0->band_type[w*16+g] = midcb; | |
sce1->band_type[w*16+g] = sidcb; | |
} else if ((sce0->band_type[w*16+g] != NOISE_BT) ^ (sce1->band_type[w*16+g] != NOISE_BT)) { | |
/* ms_mask unneeded, and it confuses some decoders */ | |
cpe->ms_mask[w*16+g] = 0; | |
} | |
break; | |
} else if (B1 > B0) { | |
/* More boost won't fix this */ | |
break; | |
} | |
} | |
} | |
if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT) | |
prev_mid = sce0->sf_idx[w*16+g]; | |
if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT) | |
prev_side = sce1->sf_idx[w*16+g]; | |
start += sce0->ics.swb_sizes[g]; | |
} | |
} | |
} | |
const AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = { | |
[AAC_CODER_ANMR] = { | |
search_for_quantizers_anmr, | |
encode_window_bands_info, | |
quantize_and_encode_band, | |
ff_aac_encode_tns_info, | |
ff_aac_encode_ltp_info, | |
ff_aac_encode_main_pred, | |
ff_aac_adjust_common_pred, | |
ff_aac_adjust_common_ltp, | |
ff_aac_apply_main_pred, | |
ff_aac_apply_tns, | |
ff_aac_update_ltp, | |
ff_aac_ltp_insert_new_frame, | |
set_special_band_scalefactors, | |
search_for_pns, | |
mark_pns, | |
ff_aac_search_for_tns, | |
ff_aac_search_for_ltp, | |
search_for_ms, | |
ff_aac_search_for_is, | |
ff_aac_search_for_pred, | |
}, | |
[AAC_CODER_TWOLOOP] = { | |
search_for_quantizers_twoloop, | |
codebook_trellis_rate, | |
quantize_and_encode_band, | |
ff_aac_encode_tns_info, | |
ff_aac_encode_ltp_info, | |
ff_aac_encode_main_pred, | |
ff_aac_adjust_common_pred, | |
ff_aac_adjust_common_ltp, | |
ff_aac_apply_main_pred, | |
ff_aac_apply_tns, | |
ff_aac_update_ltp, | |
ff_aac_ltp_insert_new_frame, | |
set_special_band_scalefactors, | |
search_for_pns, | |
mark_pns, | |
ff_aac_search_for_tns, | |
ff_aac_search_for_ltp, | |
search_for_ms, | |
ff_aac_search_for_is, | |
ff_aac_search_for_pred, | |
}, | |
[AAC_CODER_FAST] = { | |
search_for_quantizers_fast, | |
codebook_trellis_rate, | |
quantize_and_encode_band, | |
ff_aac_encode_tns_info, | |
ff_aac_encode_ltp_info, | |
ff_aac_encode_main_pred, | |
ff_aac_adjust_common_pred, | |
ff_aac_adjust_common_ltp, | |
ff_aac_apply_main_pred, | |
ff_aac_apply_tns, | |
ff_aac_update_ltp, | |
ff_aac_ltp_insert_new_frame, | |
set_special_band_scalefactors, | |
search_for_pns, | |
mark_pns, | |
ff_aac_search_for_tns, | |
ff_aac_search_for_ltp, | |
search_for_ms, | |
ff_aac_search_for_is, | |
ff_aac_search_for_pred, | |
}, | |
}; | |