Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
import gradio as gr | |
def greet(my_text): | |
with torch.no_grad(): | |
tokens = tokenizer(my_text, padding=True, truncation=True, return_tensors="pt") | |
outputs = model(**tokens) | |
logits = outputs.logits | |
probabilities = torch.softmax(logits, dim=1) | |
label_ids = torch.argmax(probabilities, dim=1) | |
labels = ['Negative', 'Positive'] | |
label = labels[label_ids] | |
return label | |
demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="Sentiment Analysis",description ="Classify a text into either Positive or negative", | |
article = "hey my nam is pranjal khadka") | |
#demo.launch(share = True) | |
demo.launch() |